ps_gpu_wrapper.cc 42.1 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

T
Thunderbrook 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#ifdef PADDLE_WITH_PSLIB
void AfsWrapper::init(const std::string& fs_name, const std::string& fs_user,
                      const std::string& pass_wd, const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
75 76 77 78 79 80 81 82 83 84 85 86

int AfsWrapper::touchz(const std::string& path) {
  return afs_handler_.touchz(path);
}

std::string AfsWrapper::cat(const std::string& path) {
  return afs_handler_.cat(path);
}

int AfsWrapper::mv(const std::string& old_path, const std::string& dest_path) {
  return afs_handler_.mv(old_path, dest_path);
}
T
Thunderbrook 已提交
87 88
#endif

T
Thunderbrook 已提交
89 90
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
T
Thunderbrook 已提交
91 92 93 94 95 96 97 98
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
99
    VLOG(0) << "AFS Init Error";
T
Thunderbrook 已提交
100 101 102 103
  }
  use_afs_api_ = 1;
}
#endif
104
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
105
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
106 107
  platform::Timer timeline;
  timeline.Start();
108
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
109
  gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
110

Y
yaoxuefeng 已提交
111
  std::vector<std::thread> threads;
Y
yaoxuefeng 已提交
112 113 114 115 116 117 118 119

  // data should be in input channel

  thread_dim_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_dim_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_dim_keys_[i][j].resize(multi_mf_dim_);
120
    }
Y
yaoxuefeng 已提交
121
  }
Y
yaoxuefeng 已提交
122 123 124 125

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
126
  size_t begin = 0;
Y
yaoxuefeng 已提交
127 128 129 130 131 132

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
Y
yaoxuefeng 已提交
133
    VLOG(0) << "psgpu wrapperinputslotchannle size: " << input_channel->Size();
Y
yaoxuefeng 已提交
134 135 136 137 138
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
139 140 141 142 143 144 145 146 147 148 149 150 151
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
                                      int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
               j < slot_offset[slot_offset_vector_[slot_idx] + 1]; j++) {
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
Y
yaoxuefeng 已提交
152 153 154
            if (feasign_v[j] != 0) {
              this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
            }
155 156 157 158
          }
        }
      }
    };
Y
yaoxuefeng 已提交
159
    for (int i = 0; i < thread_keys_thread_num_; i++) {
Y
yaoxuefeng 已提交
160 161 162 163
      threads.push_back(
          std::thread(gen_dynamic_mf_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));

Y
yaoxuefeng 已提交
164
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
165
    }
Y
yaoxuefeng 已提交
166 167 168 169
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
170
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
204
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
205 206 207 208
  }

  timeline.Start();

209
  threads.clear();
Y
yaoxuefeng 已提交
210
  // merge thread_keys to shard_keys
211 212 213 214 215 216 217
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, dim_id,
                               thread_dim_keys_[i][shard_num][dim_id]);
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
218
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
Y
yaoxuefeng 已提交
219 220
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
221
    }
222 223 224
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
225 226 227
  }
  timeline.Pause();

228
  VLOG(0) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
229 230 231 232 233
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

234
  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
235 236 237 238
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      if (i == 0 && j == multi_mf_dim_ - 1) {
        gpu_task->feature_dim_keys_[i][j].push_back(0);
239
      }
Y
yaoxuefeng 已提交
240 241 242 243
      VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
              << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
      gpu_task->value_dim_ptr_[i][j].resize(
          gpu_task->feature_dim_keys_[i][j].size());
244
    }
Y
yaoxuefeng 已提交
245
  }
246 247 248 249
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
T
Thunderbrook 已提交
250
  std::vector<std::future<void>> task_futures;
251 252 253 254
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

255 256 257
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

258 259
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
260 261 262
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
Y
yaoxuefeng 已提交
263 264 265 266

  for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
    device_dim_keys[dev].resize(multi_mf_dim_);
    device_dim_ptr[dev].resize(multi_mf_dim_);
267
  }
Y
yaoxuefeng 已提交
268

T
Thunderbrook 已提交
269
  // auto& device_mutex = gpu_task->mutex_;
270 271 272 273 274 275

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
276
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
277
#endif
278

279
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
280 281 282 283 284 285 286 287 288 289 290
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

291
  timeline.Start();
292 293 294 295 296 297 298 299 300

  auto ptl_dynamic_mf_func = [this, &local_dim_keys, &local_dim_ptr,
                              &fleet_ptr](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    size_t key_size = local_dim_keys[i][j].size();
    int32_t status = -1;
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
T
Thunderbrook 已提交
301 302
          i, reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
          this->table_id_, local_dim_keys[i][j].data(), key_size);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
              << local_dim_keys[i][j].size();
    }
#endif
  };
Y
yaoxuefeng 已提交
338 339 340 341 342 343

  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      task_futures.emplace_back(
          pull_thread_pool_[i]->enqueue(ptl_dynamic_mf_func, i, j));
344
    }
345
  }
Y
yaoxuefeng 已提交
346 347
  for (auto& f : task_futures) {
    f.wait();
348
  }
Y
yaoxuefeng 已提交
349
  task_futures.clear();
350
  timeline.Pause();
T
Thunderbrook 已提交
351
  VLOG(0) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
352
          << " seconds.";
Y
yaoxuefeng 已提交
353 354 355 356 357 358 359 360
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
361 362

  timeline.Start();
Y
yaoxuefeng 已提交
363 364 365
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
T
Thunderbrook 已提交
366 367
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;
Y
yaoxuefeng 已提交
368 369 370 371
  auto build_pull_dynamic_mf_func = [this, device_num, &local_dim_keys,
                                     &local_dim_ptr, &device_dim_keys,
                                     &device_dim_ptr,
                                     &device_dim_mutex](int i, int j) {
372 373 374 375 376 377 378 379 380
#ifdef PADDLE_WITH_PSLIB
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
Y
yaoxuefeng 已提交
381
    // allocate local keys to devices
382
    for (int dev = 0; dev < device_num; dev++) {
Y
yaoxuefeng 已提交
383 384 385 386 387 388 389 390
      device_dim_mutex[dev][j]->lock();
      int len = task_keys[dev].size();
      int cur = device_dim_keys[dev][j].size();
      device_dim_keys[dev][j].resize(device_dim_keys[dev][j].size() + len);
      device_dim_ptr[dev][j].resize(device_dim_ptr[dev][j].size() + len);
      for (int k = 0; k < len; ++k) {
        device_dim_keys[dev][j][cur + k] = task_keys[dev][k];
        device_dim_ptr[dev][j][cur + k] = task_ptrs[dev][k];
391
      }
Y
yaoxuefeng 已提交
392
      device_dim_mutex[dev][j]->unlock();
393 394 395
    }
#endif
  };
Y
yaoxuefeng 已提交
396
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
T
Thunderbrook 已提交
397 398
                     &local_ptr, &device_task_keys, &device_task_ptrs](int i) {
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
399
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
400
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
401 402 403
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
404
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
405
#endif
406 407 408 409 410 411

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
412
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
428
#endif
T
Thunderbrook 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(build_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
  auto calc_prefix_func = [this, &prefix_sum, &device_keys, &device_vals,
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
  auto prepare_dev_value_func = [device_num, &prefix_sum, &device_keys,
                                 &device_vals, &device_task_keys,
                                 &device_task_ptrs](int dev, int shard_id) {
    auto& task_keys = device_task_keys[shard_id];
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
#endif

#ifdef PADDLE_WITH_PSCORE
477
    auto& task_ptrs = device_task_ptrs[shard_id];
T
Thunderbrook 已提交
478
#endif
479

T
Thunderbrook 已提交
480 481
    int len = prefix_sum[dev][shard_id + 1] - prefix_sum[dev][shard_id];
    int cur = prefix_sum[dev][shard_id];
T
Thunderbrook 已提交
482
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
506 507
        }
      }
T
Thunderbrook 已提交
508
    }
T
Thunderbrook 已提交
509 510
#endif
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();
      val.delta_score = ptr_val[2];
      val.show = ptr_val[3];
      val.clk = ptr_val[4];
      val.slot = ptr_val[0];
      val.lr = ptr_val[5];
      val.lr_g2sum = ptr_val[6];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
T
Thunderbrook 已提交
533 534
        }
      }
T
Thunderbrook 已提交
535
    }
T
Thunderbrook 已提交
536
#endif
T
Thunderbrook 已提交
537
    VLOG(3) << "GpuPs build hbmps done";
Y
yaoxuefeng 已提交
538
  };
539

T
Thunderbrook 已提交
540
  if (multi_mf_dim_) {
541 542 543
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
Y
yaoxuefeng 已提交
544
            std::thread(build_pull_dynamic_mf_func, i, j);
545 546
      }
    }
T
Thunderbrook 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
561 562
  }
  timeline.Pause();
T
Thunderbrook 已提交
563
  VLOG(0) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
564
          << " seconds.";
Y
yaoxuefeng 已提交
565 566
}

567
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
568
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
569 570
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
571

572
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
573
  size_t size_max = 0;
Y
yaoxuefeng 已提交
574 575 576 577 578 579 580

  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      VLOG(1) << i << " card with dynamic mf dim: " << index_dim_vec_[j]
              << " dim index: " << j << " contains feasign nums: "
              << gpu_task->device_dim_ptr_[i][j].size();
581
    }
Y
yaoxuefeng 已提交
582 583 584
    VLOG(1) << i << " card with dynamic mf contains feasign nums total: "
            << feature_keys_count[i];
    size_max = std::max(size_max, feature_keys_count[i]);
T
Thunderbrook 已提交
585
  }
Y
yaoxuefeng 已提交
586

T
Thunderbrook 已提交
587
  if (HeterPs_) {
588 589
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
590
  }
591
  if (size_max <= 0) {
592
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
593 594
    return;
  }
595
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
596
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
F
Fan Zhang 已提交
597
#ifdef PADDLE_WITH_CUDA
598
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
F
Fan Zhang 已提交
599
#endif
Y
yaoxuefeng 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
  auto build_dynamic_mf_func = [this, &gpu_task](int i, int j) {
    this->HeterPs_->set_multi_mf_dim(multi_mf_dim_, max_mf_dim_);
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "building table: " << i << "with mf dim: " << mf_dim;
    size_t feature_value_size =
        TYPEALIGN(8, sizeof(FeatureValue) + ((mf_dim + 1) * sizeof(float)));
    auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
    auto& device_dim_ptrs = gpu_task->device_dim_ptr_[i][j];
    size_t len = device_dim_keys.size();
    CHECK(len == device_dim_ptrs.size());
    this->mem_pools_[i * this->multi_mf_dim_ + j] =
        new MemoryPool(len, feature_value_size);
    auto& mem_pool = this->mem_pools_[i * this->multi_mf_dim_ + j];
    for (size_t k = 0; k < len; k++) {
      FeatureValue* val = (FeatureValue*)(mem_pool->mem_address(k));
      float* ptr_val = device_dim_ptrs[k]->data();
      size_t dim = device_dim_ptrs[k]->size();
#ifdef PADDLE_WITH_PSLIB
      val->delta_score =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::delta_score_index()];
      val->show = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                              DownpourCtrDymfFeatureValue::show_index()];
      val->clk = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                             DownpourCtrDymfFeatureValue::click_index()];
      val->slot = int(ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                  DownpourCtrDymfFeatureValue::slot_index()]);
      val->lr = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                            DownpourCtrDymfFeatureValue::embed_w_index()];
      val->lr_g2sum =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::embed_g2sum_index()];
      val->cpu_ptr = (uint64_t)(device_dim_ptrs[k]);
Y
yaoxuefeng 已提交
633 634

      // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
Y
yaoxuefeng 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
      ptr_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  mf_dim_index()] = float(mf_dim);
      val->mf_dim = mf_dim;
#endif
      if (dim > 8) {  // CpuPS alreay expand as mf_dim
        val->mf_size = mf_dim + 1;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = ptr_val[x + 8];
        }
      } else {
        val->mf_size = 0;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = 0;
        }
      }
    }
Y
yaoxuefeng 已提交
651

Y
yaoxuefeng 已提交
652
    platform::CUDADeviceGuard guard(resource_->dev_id(i));
Y
yaoxuefeng 已提交
653

Y
yaoxuefeng 已提交
654 655
    this->hbm_pools_[i * this->multi_mf_dim_ + j] = new HBMMemoryPool(mem_pool);
    auto& cur_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
Y
yaoxuefeng 已提交
656

Y
yaoxuefeng 已提交
657 658
    this->HeterPs_->build_ps(i, device_dim_keys.data(), cur_pool->mem(), len,
                             feature_value_size, 500000, 2);
Y
yaoxuefeng 已提交
659

Y
yaoxuefeng 已提交
660 661 662 663 664 665 666
    if (device_dim_keys.size() > 0) {
      VLOG(0) << "show ptr table: " << i
              << " table kv size: " << device_dim_keys.size()
              << "dim: " << mf_dim << " len: " << len;
      this->HeterPs_->show_one_table(i);
    }
    delete mem_pool;
Y
yaoxuefeng 已提交
667
  };
Y
yaoxuefeng 已提交
668 669 670 671 672
  threads.resize(device_num * multi_mf_dim_);
  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads[i + j * device_num] = std::thread(build_dynamic_mf_func, i, j);
    }
Y
yaoxuefeng 已提交
673
  }
Y
yaoxuefeng 已提交
674

Y
yaoxuefeng 已提交
675 676
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
677 678
  }
  timeline.Pause();
679
  VLOG(0) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
680
          << " s.";
681 682 683 684 685 686 687 688 689 690 691 692 693 694
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }
Y
yaoxuefeng 已提交
695
  InitSlotInfo();
696 697
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
Y
yaoxuefeng 已提交
698

699
  data_ready_channel_->Put(gpu_task);
Y
yaoxuefeng 已提交
700

701 702 703 704 705
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
706
  VLOG(3) << "start build CPU ps thread.";
707
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
708 709
}

710 711
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
712 713 714 715 716
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
717
    VLOG(3) << "thread PreBuildTask start.";
718 719 720
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
721
    PreBuildTask(gpu_task);
722
    timer.Pause();
723
    VLOG(0) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
724
            << " s";
725 726 727 728 729
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

730 731 732 733 734 735 736 737 738 739
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
740
  }
741

742
  VLOG(0) << "BuildPull start.";
743 744 745 746 747
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
748
  VLOG(0) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
749 750 751
          << "s";

  current_task_ = gpu_task;
752 753 754 755 756 757 758 759 760
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
761 762

  build_task();
763
  timer.Pause();
764 765 766 767 768 769

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

T
Thunderbrook 已提交
770
  VLOG(0) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
771 772 773 774 775 776 777 778 779 780 781
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
Y
yaoxuefeng 已提交
782

783
  for (size_t i = 0; i < heter_devices_.size(); i++) {
Y
yaoxuefeng 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    for (int j = 0; j < multi_mf_dim_; j++) {
      keysize_max =
          std::max(keysize_max, current_task_->device_dim_keys_[i][j].size());
    }
  }

  auto dump_pool_to_cpu_func = [this](int i, int j) {
    PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(this->resource_->dev_id(i)));
    auto& hbm_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
    auto& device_keys = this->current_task_->device_dim_keys_[i][j];
    size_t len = device_keys.size();
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "dump pool to cpu table: " << i << "with mf dim: " << mf_dim;
    size_t feature_value_size =
        TYPEALIGN(8, sizeof(FeatureValue) + ((mf_dim + 1) * sizeof(float)));
Y
yaoxuefeng 已提交
799

Y
yaoxuefeng 已提交
800 801 802
    char* test_build_values = (char*)malloc(feature_value_size * len);
    cudaMemcpy(test_build_values, hbm_pool->mem(), feature_value_size * len,
               cudaMemcpyDeviceToHost);
Y
yaoxuefeng 已提交
803

Y
yaoxuefeng 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
    CHECK(len == hbm_pool->capacity());
#ifdef PADDLE_WITH_PSLIB
    uint64_t unuse_key = std::numeric_limits<uint64_t>::max();
    for (size_t i = 0; i < len; ++i) {
      if (device_keys[i] == unuse_key) {
        continue;
      }
      size_t offset = i * feature_value_size;
      FeatureValue* gpu_val = (FeatureValue*)(test_build_values + offset);
      auto* downpour_value =
          (paddle::ps::DownpourFixedFeatureValue*)(gpu_val->cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val->mf_size > 0 && downpour_value_size == 8) {
        downpour_value->resize(gpu_val->mf_dim + 1 + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  delta_score_index()] = gpu_val->delta_score;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  show_index()] = gpu_val->show;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  click_index()] = gpu_val->clk;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_w_index()] = gpu_val->lr;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_g2sum_index()] = gpu_val->lr_g2sum;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  slot_index()] = gpu_val->slot;
      if (gpu_val->mf_size > 0) {
        for (int x = 0; x < gpu_val->mf_dim + 1; x++) {
          cpu_val[x + 8] = gpu_val->mf[x];
        }
      }
    }
#endif
    free(test_build_values);
  };
  if (multi_mf_dim_) {
    VLOG(0) << "psgpu wrapper dump pool: multi_mf_dim_: " << multi_mf_dim_;
    size_t device_num = heter_devices_.size();
    std::vector<std::thread> threads(device_num * multi_mf_dim_);
    for (size_t i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i + j * device_num] = std::thread(dump_pool_to_cpu_func, i, j);
      }
    }
    for (std::thread& t : threads) {
      t.join();
    }
853 854 855 856
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
857

Y
yaoxuefeng 已提交
858 859 860
  for (size_t i = 0; i < hbm_pools_.size(); i++) {
    delete hbm_pools_[i];
  }
861
  gpu_task_pool_.Push(current_task_);
862 863 864
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
Y
yaoxuefeng 已提交
865
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
879
  VLOG(3) << "Begine Gpu/Xpu Ps PullSparse";
880
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
881 882 883 884 885
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
886
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
887
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
888
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
889 890 891 892 893 894 895 896 897 898
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
899
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
900
    auto buf_length =
901
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
Y
yaoxuefeng 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const std::vector<int>& slot_dim,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  size_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  size_t feature_value_size = 0;

  feature_value_size = TYPEALIGN(
      8, sizeof(FeatureValue) + sizeof(float) * (index_dim_vec_.back() + 1));

#ifdef PADDLE_WITH_CUDA
  VLOG(3) << "Begine Gpu Ps PullSparse";
  auto buf = memory::Alloc(place, total_length * feature_value_size);
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
#endif
#ifdef PADDLE_WITH_XPU_KP
  VLOG(3) << "Begine Xpu Ps PullSparse";
  FeatureValue* total_values_gpu = nullptr;
  xpu_malloc(reinterpret_cast<void**>(&total_values_gpu),
             total_length * feature_value_size);
#endif
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(total_keys_tensor.mutable_data<int64_t>(
            {int64_t(total_length), 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    auto buf_dim = memory::Alloc(place, slot_dim.size() * sizeof(int));
    int* gpu_dim = reinterpret_cast<int*>(buf_dim->ptr());
    cudaMemcpy(gpu_dim, slot_dim.data(), slot_dim.size() * sizeof(int),
               cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;

    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          total_length);

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";

    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length, gpu_dim);

    pull_gpups_timer.Pause();

F
Fan Zhang 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_KP
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }

F
Fan Zhang 已提交
1031 1032 1033 1034 1035
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** xpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* xpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
F
Fan Zhang 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_keys, keys.data(),
                                          keys.size() * sizeof(uint64_t*),
                                          XPU_HOST_TO_DEVICE));
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_len, slot_lengths_lod.data(),
                                          slot_lengths.size() * sizeof(int64_t),
                                          XPU_HOST_TO_DEVICE));

    this->CopyKeys(place, xpu_keys, total_keys, xpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, xpu_keys, values, total_values_gpu, xpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
#endif
T
Thunderbrook 已提交
1059 1060
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
F
Fan Zhang 已提交
1061
        "GpuPs/XpuPs: PullSparse Only Support CUDAPlace or XPUPlace Now."));
T
Thunderbrook 已提交
1062 1063
  }
  all_timer.Pause();
1064
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
1081
  // #ifdef PADDLE_WITH_CUDA
F
Fan Zhang 已提交
1082
  VLOG(3) << "Begin GPUPS PushSparseGrad";
Y
yaoxuefeng 已提交
1083 1084 1085 1086
  size_t grad_value_size =
      TYPEALIGN(8, sizeof(FeaturePushValue) + (max_mf_dim_ * sizeof(float)));
  auto buf = memory::Alloc(place, total_length * grad_value_size);
  VLOG(3) << "Push Sparse Max mf dimention: " << max_mf_dim_;
T
Thunderbrook 已提交
1087 1088 1089 1090 1091 1092
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
1093
#ifdef PADDLE_WITH_CUDA
1094
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
1095 1096 1097 1098 1099
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
Y
yaoxuefeng 已提交
1100 1101 1102 1103 1104 1105 1106
    if (!multi_mf_dim_) {
      this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                        hidden_size, total_length, batch_size);
    } else {
      this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                        total_length, batch_size, grad_value_size);
    }
T
Thunderbrook 已提交
1107 1108 1109 1110 1111 1112 1113

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1114
#endif
F
Fan Zhang 已提交
1115
  } else if (platform::is_xpu_place(place)) {
F
Fan Zhang 已提交
1116
#ifdef PADDLE_WITH_XPU_KP
F
Fan Zhang 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to xpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseXPU in XPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1132
#endif
T
Thunderbrook 已提交
1133 1134 1135 1136 1137
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
Y
yaoxuefeng 已提交
1138 1139
  time_3 += all_timer.ElapsedSec();
  time_4 += push_gpups_timer.ElapsedSec();
1140
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1141 1142 1143 1144 1145 1146 1147 1148
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif