elementwise_div_op.h 10.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include <string>
18 19
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
20 21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
23 24
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
25

26 27 28 29 30 31
#include "paddle/fluid/framework/pten_utils.h"

// only can include the headers in paddle/pten/include dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/kernels/math_kernel.h"
G
gongweibao 已提交
32 33 34
namespace paddle {
namespace operators {

35 36 37 38 39
template <typename DeviceContext, typename T>
void default_elementwise_div(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
40 41 42
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
43 44 45 46 47 48
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseDivFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseDivFunctor<T>(), z);
  }
49 50
}

Q
QI JUN 已提交
51
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
52
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
53 54
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
55 56 57
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
58
    z->mutable_data<T>(ctx.GetPlace());
59

60 61 62 63 64
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
65
    pten::DivideKernel<T>(dev_ctx, *pt_x.get(), *pt_y.get(), axis, pt_z.get());
G
gongweibao 已提交
66 67 68 69
  }
};

template <typename T>
C
chengduoZH 已提交
70 71
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
72 73
};

74 75 76 77 78 79 80
template <typename T>
struct DivGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
81 82 83 84
    return dout / y_conj;
  }
};

G
gongweibao 已提交
85
template <typename T>
C
chengduoZH 已提交
86 87
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
88
    return -dout * out / y;
G
gongweibao 已提交
89 90 91
  }
};

92 93 94 95 96 97 98
template <typename T>
struct DivGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> out_div_y_conj((out / y).real,
99 100 101 102 103
                                                -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

104 105 106 107 108 109 110
template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

111 112 113
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
114 115 116 117
ElementwiseDivGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
118
  int axis = ctx.Attr<int>("axis");
119

120 121 122 123
  ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

124
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
125 126 127
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
128 129 130 131
ElementwiseDivGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy);
132 133
#endif

Q
QI JUN 已提交
134
template <typename DeviceContext, typename T>
135
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
136 137
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
138
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
139 140
    using Tensor = framework::Tensor;

141
    auto* x = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
142 143 144 145 146
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
147

148
    ElementwiseDivGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
G
gongweibao 已提交
149 150 151
  }
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput("DOut")) {
      ctx->ShareDim("DX", "DOut");
      ctx->ShareLoD("DX", "DOut");
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DX", "DDOut");
      ctx->ShareLoD("DX", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
C
chentianyu03 已提交
175
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Out");
176 177

#ifdef PADDLE_WITH_MKLDNN
178
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
179 180 181 182 183 184 185
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
};

template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::Tensor;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Input<Tensor>("Out");
    auto* ddX = ctx.Input<Tensor>("DDX");
    auto* ddY = ctx.Input<Tensor>("DDY");
    auto* dX = ctx.Input<Tensor>("DX");

    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dOut = ctx.Output<Tensor>("DOut");
    auto* ddOut = ctx.Output<Tensor>("DDOut");

    int axis = ctx.Attr<int>("axis");

    if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    // ddX_safe == null ? 0 : ddX
    // ddY_safe == null ? 0 : ddY
    Tensor ddX_safe, ddY_safe;
226
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dX, ddX, &ddX_safe);
227 228
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);

229 230 231 232 233 234
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    // dY = Out * dX * ddY / Y - dX * ddX / Y
    // dOut = - dX * ddY
    // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
    // inplace ddx
    Tensor tmp;
235
    if (dOut) {
236 237 238 239
      tmp = *dOut;
    } else {
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      tmp = ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
240 241 242
    }
    if (dY) {
      // dX_div_Y = dX / Y;
243
      Tensor dX_div_Y = tmp;
244
      default_elementwise_div<DeviceContext, T>(ctx, dX, Y, &dX_div_Y);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

      // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.

      // dY = Out * dX * ddY / Y - dX * ddX / Y
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
          ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
          DivGradDX<T>(), DivDoubleDY<T>());
    }

    if (ddOut) {
      // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
260
      default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, &tmp);
261 262
      default_elementwise_sub<DeviceContext, T>(ctx, &ddX_safe, &tmp, &tmp);
      default_elementwise_div<DeviceContext, T>(ctx, &tmp, Y, ddOut);
263 264 265 266 267 268 269 270 271
    }

    if (dOut) {
      // dOut = - dX * ddY
      default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto dout = framework::EigenVector<T>::Flatten(*dOut);
      dout.device(place) = static_cast<T>(-1) * dout;
272 273 274 275
    }
  }
};

G
gongweibao 已提交
276 277
}  // namespace operators
}  // namespace paddle