elementwise_div_op.h 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17 18
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
W
Wu Yi 已提交
19 20
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
21 22 23
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"

G
gongweibao 已提交
24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31
template <typename T>
struct DivFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
};

Q
QI JUN 已提交
32
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
33
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
34 35
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
36 37 38
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
39 40 41

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
42 43
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
G
gongweibao 已提交
44 45 46 47
  }
};

template <typename T>
C
chengduoZH 已提交
48 49
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
50 51 52
};

template <typename T>
C
chengduoZH 已提交
53 54
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
55
    return -dout * out / y;
G
gongweibao 已提交
56 57 58
  }
};

59 60 61 62 63 64 65
template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

Q
QI JUN 已提交
66
template <typename DeviceContext, typename T>
67
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
68 69
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
70
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
71 72 73 74 75 76 77 78
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
79 80 81

    auto* x = dout;  // Fake x, not used

C
chengduoZH 已提交
82 83
    ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
G
gongweibao 已提交
84 85 86
  }
};

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput("DOut")) {
      ctx->ShareDim("DX", "DOut");
      ctx->ShareLoD("DX", "DOut");
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DX", "DDOut");
      ctx->ShareLoD("DX", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = ctx.Input<Tensor>("DDX")->type();

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::Tensor;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Input<Tensor>("Out");
    auto* ddX = ctx.Input<Tensor>("DDX");
    auto* ddY = ctx.Input<Tensor>("DDY");
    auto* dX = ctx.Input<Tensor>("DX");

    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dOut = ctx.Output<Tensor>("DOut");
    auto* ddOut = ctx.Output<Tensor>("DDOut");

    int axis = ctx.Attr<int>("axis");

    if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    // ddX_safe == null ? 0 : ddX
    // ddY_safe == null ? 0 : ddY
    Tensor ddX_safe, ddY_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Out, ddX, &ddX_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);

    if (dOut) {
      // dOut = - dX * ddY
      default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto dout = framework::EigenVector<T>::Flatten(*dOut);
      dout.device(place) = static_cast<T>(-1) * dout;
    }

    if (dY) {
      // dX_div_Y = dX / Y;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      Tensor dX_div_Y =
          ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          ctx, dX, Y, axis, DivFunctor<T>(), &dX_div_Y);

      // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.

      // dY = Out * dX * ddY / Y - dX * ddX / Y
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
          ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
          DivGradDX<T>(), DivDoubleDY<T>());
    }

    if (ddOut) {
      // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
      default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, ddOut);
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &ddX_safe, ddOut, 0, SubFunctor<T>(), ddOut);
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          ctx, ddOut, Y, axis, DivFunctor<T>(), ddOut);
    }
  }
};

G
gongweibao 已提交
191 192
}  // namespace operators
}  // namespace paddle