pd_ops.cc 5.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/dialect/pd_ops.h"

17 18
#include <mlir/IR/Matchers.h>
#include <mlir/IR/PatternMatch.h>
Y
Yan Chunwei 已提交
19 20
#include "paddle/infrt/dialect/infrt_base.h"

21 22 23 24 25
#define GET_OP_CLASSES
#include "paddle/infrt/dialect/pd_ops.cpp.inc"  // NOLINT

#include "paddle/infrt/dialect/rewrite.hpp.inc"  // NOLINT

Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
namespace mlir {
namespace pd {
PaddleDialect::PaddleDialect(MLIRContext *context)
    : Dialect("pd", context, TypeID::get<PaddleDialect>()) {
  addOperations<
#define GET_OP_LIST
#include "paddle/infrt/dialect/pd_ops.cpp.inc"  // NOLINT
      >();
#undef GET_OP_LIST
}

mlir::Operation *PaddleDialect::materializeConstant(mlir::OpBuilder &builder,
                                                    mlir::Attribute value,
                                                    mlir::Type type,
                                                    mlir::Location loc) {
  return builder.create<ConstantOp>(loc, value);
}

void ConstantOp::build(OpBuilder &builder,
                       OperationState &state,
                       Attribute value) {
  if (auto elem_attr = value.dyn_cast<ElementsAttr>()) {
    return ConstantOp::build(builder, state, elem_attr);
  } else if (value.isa<BoolAttr, FloatAttr, IntegerAttr>()) {
    ShapedType type = RankedTensorType::get(/*shape=*/{}, value.getType());
    state.addAttribute("value", DenseElementsAttr::get(type, value));
    state.addTypes(type);
    return;
  }
  llvm_unreachable("unsupported attribute type for building pd.constant");
}

LogicalResult ConstantOp::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(attributes.get("value").getType());
  return success();
}
68 69
mlir::OpFoldResult ConstantOp::fold(
    ::llvm::ArrayRef<mlir::Attribute> operands) {
Y
Yan Chunwei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83
  return value();
}

LogicalResult ElementwiseAdd::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}
void ElementwiseAdd::getCanonicalizationPatterns(
84
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
85 86 87
  results.insert<FuseMulAdd>(context);
}

88
mlir::OpFoldResult ElementwiseAdd::fold(
Y
Yan Chunwei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    llvm::ArrayRef<mlir::Attribute> operands) {
  if (getElementTypeOrSelf(getType()).isa<FloatType>()) {
    if (!operands[0] || !operands[1]) return {};
    DenseElementsAttr lhs = operands[0].dyn_cast<DenseElementsAttr>();
    DenseElementsAttr rhs = operands[1].dyn_cast<DenseElementsAttr>();
    if (!lhs || !rhs) return {};
    ShapedType type = getType().template cast<ShapedType>();
    if (!type.hasStaticShape()) return {};
    Type etype = type.getElementType();
    if (!etype.isa<FloatType>()) return {};
    SmallVector<APFloat, 6> values;
    values.reserve(lhs.getNumElements());
    for (const auto zip :
         llvm::zip(lhs.getValues<APFloat>(), rhs.getValues<APFloat>())) {
      values.push_back(
          std::plus<APFloat>()(std::get<0>(zip), std::get<1>(zip)));
    }
    return DenseElementsAttr::get(type, values);
  }
  return {};
}

LogicalResult ElementwiseDiv::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult ElementwiseMul::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult ElementwiseSub::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult MulOp::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

void ReluOp::getCanonicalizationPatterns(
156
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
157 158 159 160
  results.insert<FuseFCRelu>(context);
}

void FusedRepeatedFCRelu::getCanonicalizationPatterns(
161
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
162 163 164 165
  results.insert<FuseRepeatedFCRelu2>(context);
}

void BatchNormOp::getCanonicalizationPatterns(
166
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
167 168 169 170 171
  results.insert<FuseBatchNormWithConvPattern>(context);
}

}  // namespace pd
}  // namespace mlir