pd_ops.cc 5.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/dialect/pd_ops.h"

#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "paddle/infrt/dialect/infrt_base.h"

namespace mlir {
namespace pd {
PaddleDialect::PaddleDialect(MLIRContext *context)
    : Dialect("pd", context, TypeID::get<PaddleDialect>()) {
  addOperations<
#define GET_OP_LIST
#include "paddle/infrt/dialect/pd_ops.cpp.inc"  // NOLINT
      >();
#undef GET_OP_LIST
}

mlir::Operation *PaddleDialect::materializeConstant(mlir::OpBuilder &builder,
                                                    mlir::Attribute value,
                                                    mlir::Type type,
                                                    mlir::Location loc) {
  return builder.create<ConstantOp>(loc, value);
}

#define GET_OP_CLASSES
#include "paddle/infrt/dialect/pd_ops.cpp.inc"  // NOLINT
#undef GET_OP_CLASSES

#include "paddle/infrt/dialect/rewrite.hpp.inc"  // NOLINT

void ConstantOp::build(OpBuilder &builder,
                       OperationState &state,
                       Attribute value) {
  if (auto elem_attr = value.dyn_cast<ElementsAttr>()) {
    return ConstantOp::build(builder, state, elem_attr);
  } else if (value.isa<BoolAttr, FloatAttr, IntegerAttr>()) {
    ShapedType type = RankedTensorType::get(/*shape=*/{}, value.getType());
    state.addAttribute("value", DenseElementsAttr::get(type, value));
    state.addTypes(type);
    return;
  }
  llvm_unreachable("unsupported attribute type for building pd.constant");
}

LogicalResult ConstantOp::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(attributes.get("value").getType());
  return success();
}
::mlir::OpFoldResult ConstantOp::fold(
    ::llvm::ArrayRef<::mlir::Attribute> operands) {
  return value();
}

LogicalResult ElementwiseAdd::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}
void ElementwiseAdd::getCanonicalizationPatterns(
    ::mlir::OwningRewritePatternList &results, ::mlir::MLIRContext *context) {
  results.insert<FuseMulAdd>(context);
}

::mlir::OpFoldResult ElementwiseAdd::fold(
    llvm::ArrayRef<mlir::Attribute> operands) {
  if (getElementTypeOrSelf(getType()).isa<FloatType>()) {
    if (!operands[0] || !operands[1]) return {};
    DenseElementsAttr lhs = operands[0].dyn_cast<DenseElementsAttr>();
    DenseElementsAttr rhs = operands[1].dyn_cast<DenseElementsAttr>();
    if (!lhs || !rhs) return {};
    ShapedType type = getType().template cast<ShapedType>();
    if (!type.hasStaticShape()) return {};
    Type etype = type.getElementType();
    if (!etype.isa<FloatType>()) return {};
    SmallVector<APFloat, 6> values;
    values.reserve(lhs.getNumElements());
    for (const auto zip :
         llvm::zip(lhs.getValues<APFloat>(), rhs.getValues<APFloat>())) {
      values.push_back(
          std::plus<APFloat>()(std::get<0>(zip), std::get<1>(zip)));
    }
    return DenseElementsAttr::get(type, values);
  }
  return {};
}

LogicalResult ElementwiseDiv::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult ElementwiseMul::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult ElementwiseSub::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult MulOp::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

void ReluOp::getCanonicalizationPatterns(
    ::mlir::OwningRewritePatternList &results, ::mlir::MLIRContext *context) {
  results.insert<FuseFCRelu>(context);
}

void FusedRepeatedFCRelu::getCanonicalizationPatterns(
    ::mlir::OwningRewritePatternList &results, ::mlir::MLIRContext *context) {
  results.insert<FuseRepeatedFCRelu2>(context);
}

void BatchNormOp::getCanonicalizationPatterns(
    ::mlir::OwningRewritePatternList &results, ::mlir::MLIRContext *context) {
  results.insert<FuseBatchNormWithConvPattern>(context);
}

}  // namespace pd
}  // namespace mlir