yolo_box_op.cc 10.9 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
13
#include "paddle/fluid/framework/op_version_registry.h"
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using framework::Tensor;

class YoloBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
24 25 26 27
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasInput("ImgSize"), "Input", "ImgSize", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Boxes"), "Output", "Boxes", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Scores"), "Output", "Scores", "YoloBoxOp");
D
dengkaipeng 已提交
28 29

    auto dim_x = ctx->GetInputDim("X");
30
    auto dim_imgsize = ctx->GetInputDim("ImgSize");
D
dengkaipeng 已提交
31 32 33
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    int anchor_num = anchors.size() / 2;
    auto class_num = ctx->Attrs().Get<int>("class_num");
34 35
    auto iou_aware = ctx->Attrs().Get<bool>("iou_aware");
    auto iou_aware_factor = ctx->Attrs().Get<float>("iou_aware_factor");
D
dengkaipeng 已提交
36

X
xiaoting 已提交
37 38 39 40
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, platform::errors::InvalidArgument(
                                           "Input(X) should be a 4-D tensor."
                                           "But received X dimension(%s)",
                                           dim_x.size()));
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    if (iou_aware) {
      PADDLE_ENFORCE_EQ(
          dim_x[1], anchor_num * (6 + class_num),
          platform::errors::InvalidArgument(
              "Input(X) dim[1] should be equal to (anchor_mask_number * (6 "
              "+ class_num)) while iou_aware is true."
              "But received dim[1](%s) != (anchor_mask_number * "
              "(6+class_num)(%s).",
              dim_x[1], anchor_num * (6 + class_num)));
      PADDLE_ENFORCE_GE(
          iou_aware_factor, 0,
          platform::errors::InvalidArgument(
              "Attr(iou_aware_factor) should greater than or equal to 0."
              "But received iou_aware_factor (%s)",
              iou_aware_factor));
      PADDLE_ENFORCE_LE(
          iou_aware_factor, 1,
          platform::errors::InvalidArgument(
              "Attr(iou_aware_factor) should less than or equal to 1."
              "But received iou_aware_factor (%s)",
              iou_aware_factor));
    } else {
      PADDLE_ENFORCE_EQ(
          dim_x[1], anchor_num * (5 + class_num),
          platform::errors::InvalidArgument(
              "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
              "+ class_num))."
              "But received dim[1](%s) != (anchor_mask_number * "
              "(5+class_num)(%s).",
              dim_x[1], anchor_num * (5 + class_num)));
    }
72
    PADDLE_ENFORCE_EQ(dim_imgsize.size(), 2,
X
xiaoting 已提交
73 74 75 76
                      platform::errors::InvalidArgument(
                          "Input(ImgSize) should be a 2-D tensor."
                          "But received Imgsize size(%s)",
                          dim_imgsize.size()));
77 78 79 80 81 82
    if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          dim_imgsize[0], dim_x[0],
          platform::errors::InvalidArgument(
              "Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
    }
X
xiaoting 已提交
83 84 85 86 87
    PADDLE_ENFORCE_EQ(
        dim_imgsize[1], 2,
        platform::errors::InvalidArgument("Input(ImgSize) dim[1] should be 2."
                                          "But received imgsize dim[1](%s).",
                                          dim_imgsize[1]));
D
dengkaipeng 已提交
88
    PADDLE_ENFORCE_GT(anchors.size(), 0,
X
xiaoting 已提交
89 90 91 92
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be greater than 0."
                          "But received anchors length(%s).",
                          anchors.size()));
D
dengkaipeng 已提交
93
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
X
xiaoting 已提交
94 95 96 97
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be even integer."
                          "But received anchors length (%s)",
                          anchors.size()));
D
dengkaipeng 已提交
98
    PADDLE_ENFORCE_GT(class_num, 0,
X
xiaoting 已提交
99 100 101 102
                      platform::errors::InvalidArgument(
                          "Attr(class_num) should be an integer greater than 0."
                          "But received class_num (%s)",
                          class_num));
D
dengkaipeng 已提交
103

104 105 106 107 108 109
    int box_num;
    if ((dim_x[2] > 0 && dim_x[3] > 0) || ctx->IsRuntime()) {
      box_num = dim_x[2] * dim_x[3] * anchor_num;
    } else {
      box_num = -1;
    }
D
dengkaipeng 已提交
110
    std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
111
    ctx->SetOutputDim("Boxes", phi::make_ddim(dim_boxes));
D
dengkaipeng 已提交
112 113

    std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
114
    ctx->SetOutputDim("Scores", phi::make_ddim(dim_scores));
D
dengkaipeng 已提交
115 116 117 118 119
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
120 121
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
122 123 124 125 126 127 128
  }
};

class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
129 130
             "The input tensor of YoloBox operator is a 4-D tensor with "
             "shape of [N, C, H, W]. The second dimension(C) stores "
D
dengkaipeng 已提交
131 132
             "box locations, confidence score and classification one-hot "
             "keys of each anchor box. Generally, X should be the output "
D
dengkaipeng 已提交
133
             "of YOLOv3 network.");
134 135
    AddInput("ImgSize",
             "The image size tensor of YoloBox operator, "
D
dengkaipeng 已提交
136
             "This is a 2-D tensor with shape of [N, 2]. This tensor holds "
D
dengkaipeng 已提交
137
             "height and width of each input image used for resizing output "
138
             "box in input image scale.");
D
dengkaipeng 已提交
139 140
    AddOutput("Boxes",
              "The output tensor of detection boxes of YoloBox operator, "
D
dengkaipeng 已提交
141 142
              "This is a 3-D tensor with shape of [N, M, 4], N is the "
              "batch num, M is output box number, and the 3rd dimension "
D
dengkaipeng 已提交
143 144
              "stores [xmin, ymin, xmax, ymax] coordinates of boxes.");
    AddOutput("Scores",
D
dengkaipeng 已提交
145 146 147 148
              "The output tensor of detection boxes scores of YoloBox "
              "operator, This is a 3-D tensor with shape of "
              "[N, M, :attr:`class_num`], N is the batch num, M is "
              "output box number.");
D
dengkaipeng 已提交
149 150 151 152 153 154 155 156 157 158 159 160

    AddAttr<int>("class_num", "The number of classes to predict.");
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample_ratio",
                 "The downsample ratio from network input to YoloBox operator "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YoloBox operators.")
        .SetDefault(32);
    AddAttr<float>("conf_thresh",
D
dengkaipeng 已提交
161 162
                   "The confidence scores threshold of detection boxes. "
                   "Boxes with confidence scores under threshold should "
D
dengkaipeng 已提交
163 164
                   "be ignored.")
        .SetDefault(0.01);
165 166 167 168
    AddAttr<bool>("clip_bbox",
                  "Whether clip output bonding box in Input(ImgSize) "
                  "boundary. Default true.")
        .SetDefault(true);
169 170 171 172
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
173 174 175 176
    AddAttr<bool>("iou_aware", "Whether use iou aware. Default false.")
        .SetDefault(false);
    AddAttr<float>("iou_aware_factor", "iou aware factor. Default 0.5.")
        .SetDefault(0.5);
D
dengkaipeng 已提交
177
    AddComment(R"DOC(
D
dengkaipeng 已提交
178
         This operator generates YOLO detection boxes from output of YOLOv3 network.
D
dengkaipeng 已提交
179 180
         
         The output of previous network is in shape [N, C, H, W], while H and W
D
dengkaipeng 已提交
181 182
         should be the same, H and W specify the grid size, each grid point predict 
         given number boxes, this given number, which following will be represented as S,
D
dengkaipeng 已提交
183
         is specified by the number of anchors. In the second dimension(the channel
184 185
         dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false,
         otherwise C should be equal to S * (6 + class_num). class_num is the object
D
dengkaipeng 已提交
186
         category number of source dataset(such as 80 in coco dataset), so the 
D
dengkaipeng 已提交
187 188 189 190 191 192
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor 
         box.

         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box 
         predictions should be as follows:
D
dengkaipeng 已提交
193 194

         $$
D
dengkaipeng 已提交
195
         b_x = \\sigma(t_x) + c_x
D
dengkaipeng 已提交
196 197
         $$
         $$
D
dengkaipeng 已提交
198
         b_y = \\sigma(t_y) + c_y
D
dengkaipeng 已提交
199 200
         $$
         $$
D
dengkaipeng 已提交
201
         b_w = p_w e^{t_w}
D
dengkaipeng 已提交
202 203
         $$
         $$
D
dengkaipeng 已提交
204 205 206
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
207 208
         in the equation above, :math:`c_x, c_y` is the left top corner of current grid
         and :math:`p_w, p_h` is specified by anchors.
D
dengkaipeng 已提交
209

D
dengkaipeng 已提交
210 211
         The logistic regression value of the 5th channel of each anchor prediction boxes
         represents the confidence score of each prediction box, and the logistic
D
dengkaipeng 已提交
212
         regression value of the last :attr:`class_num` channels of each anchor prediction 
D
dengkaipeng 已提交
213
         boxes represents the classifcation scores. Boxes with confidence scores less than
D
dengkaipeng 已提交
214
         :attr:`conf_thresh` should be ignored, and box final scores is the product of 
D
dengkaipeng 已提交
215
         confidence scores and classification scores.
D
dengkaipeng 已提交
216

D
dengkaipeng 已提交
217 218 219 220
         $$
         score_{pred} = score_{conf} * score_{class}
         $$

221 222 223 224 225 226 227 228 229
         where the confidence scores follow the formula bellow

         .. math::

            score_{conf} = \begin{case}
                             obj, \text{if } iou_aware == flase \\
                             obj^{1 - iou_aware_factor} * iou^{iou_aware_factor}, \text{otherwise}
                           \end{case}

D
dengkaipeng 已提交
230 231 232 233 234 235 236 237
         )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
238 239 240 241
REGISTER_OPERATOR(
    yolo_box, ops::YoloBoxOp, ops::YoloBoxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
242 243 244 245 246 247 248 249 250

REGISTER_OP_VERSION(yolo_box)
    .AddCheckpoint(
        R"ROC(
      Upgrade yolo box to add new attribute [iou_aware, iou_aware_factor].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("iou_aware", "Whether use iou aware", false)
            .NewAttr("iou_aware_factor", "iou aware factor", 0.5f));