test_quantize_transpiler.py 12.0 KB
Newer Older
D
Dang Qingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import numpy as np
16 17
import six

D
Dang Qingqing 已提交
18 19 20
import unittest
import paddle
import paddle.fluid as fluid
21 22
from paddle.fluid.contrib.quantize.quantize_transpiler import _original_var_name
from paddle.fluid.contrib.quantize.quantize_transpiler import QuantizeTranspiler
D
Dang Qingqing 已提交
23 24 25 26 27 28


def linear_fc(num):
    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
29
    for _ in six.moves.xrange(num):
D
Dang Qingqing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        hidden = fluid.layers.fc(hidden, size=128, act='relu')
    loss = fluid.layers.cross_entropy(input=hidden, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def residual_block(num):
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr)
        return fluid.layers.batch_norm(input=tmp, act=act)

    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
57
    for _ in six.moves.xrange(num):
D
Dang Qingqing 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
        short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
        hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
    fc = fluid.layers.fc(input=hidden, size=10)
    loss = fluid.layers.cross_entropy(input=fc, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    return avg_loss


class TestQuantizeTranspiler(unittest.TestCase):
    def setUp(self):
        # since quant_op and dequant_op is not ready, use cos and sin for test
        self.weight_quant_op_type = 'fake_quantize_abs_max'
        self.dequant_op_type = 'fake_dequantize_max_abs'
        self.quantizable_op_and_inputs = {
            'conv2d': ['Input', 'Filter'],
            'depthwise_conv2d': ['Input', 'Filter'],
            'mul': ['X', 'Y']
        }
        self.quantizable_op_grad_and_inputs = {
            'conv2d_grad': ['Input', 'Filter'],
            'depthwise_conv2d_grad': ['Input', 'Filter'],
            'mul_grad': ['X', 'Y']
        }

    def check_program(self, program):
        quantized_ops = {}

        persistable_vars = [
            v.name
            for v in filter(lambda var: var.persistable, program.list_vars())
        ]

        for block in program.blocks:
            for idx, op in enumerate(block.ops):
                # check forward
                if op.type in self.quantizable_op_and_inputs:
                    for i, arg_name in enumerate(op.input_arg_names):
                        quant_op_type = self.weight_quant_op_type if \
                            _original_var_name(arg_name) \
                            in persistable_vars else self.act_quant_op_type
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        if arg_name not in quantized_ops:
                            self.assertEqual(block.ops[idx - 2 * i - 1].type,
                                             self.dequant_op_type)
                            self.assertEqual(block.ops[idx - 2 * i - 2].type,
                                             quant_op_type)
                            quantized_ops[arg_name] = block.ops[idx - 2 * i - 2]
                        else:
                            op_idx = block.ops.index(quantized_ops[arg_name])
                            self.assertLess(op_idx, idx)

                # check backward
                if op.type in self.quantizable_op_grad_and_inputs:
                    for pname in self.quantizable_op_grad_and_inputs[op.type]:
                        arg_name = op.input(pname)[0]
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        self.assertTrue(arg_name in quantized_ops)

    def linear_fc_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = linear_fc(3)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
148
            t = QuantizeTranspiler(activation_quantize_type=quant_type)
D
Dang Qingqing 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            t.training_transpile(main)
            self.check_program(main)

    def test_linear_fc_quant_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.linear_fc_quant('abs_max')

    def test_linear_fc_quant_range_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.linear_fc_quant('range_abs_max')

    def residual_block_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = residual_block(2)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
167
            t = QuantizeTranspiler(activation_quantize_type=quant_type)
D
Dang Qingqing 已提交
168 169 170 171 172 173 174 175 176 177 178
            t.training_transpile(main)
            self.check_program(main)

    def test_residual_block_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.residual_block_quant('abs_max')

    def test_residual_block_range_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.residual_block_quant('range_abs_max')

179
    def freeze_program(self, use_cuda, seed):
180
        def build_program(main, startup, is_test):
181 182
            main.random_seed = seed
            startup.random_seed = seed
183 184 185 186 187 188 189 190 191 192 193 194
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.001)
                        opt.minimize(loss)
            return [img, label], loss

D
Dang Qingqing 已提交
195 196
        main = fluid.Program()
        startup = fluid.Program()
197
        test_program = fluid.Program()
D
Dang Qingqing 已提交
198

199 200 201 202
        import random
        random.seed(0)
        np.random.seed(0)

D
Dang Qingqing 已提交
203
        feeds, loss = build_program(main, startup, False)
204 205 206
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)

207 208 209 210 211
        quant_type = 'abs_max'
        quant_transpiler = QuantizeTranspiler(
            activation_quantize_type=quant_type)
        quant_transpiler.training_transpile(main, startup)
        quant_transpiler.training_transpile(test_program, startup)
D
Dang Qingqing 已提交
212 213 214

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
215
        iters = 5
D
Dang Qingqing 已提交
216 217 218 219 220 221 222 223 224 225
        batch_size = 8
        class_num = 10
        exe.run(startup)

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
226
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
D
Dang Qingqing 已提交
227

228
        dev_name = '_gpu_' if use_cuda else '_cpu_'
D
Dang Qingqing 已提交
229
        with fluid.program_guard(main):
230
            for _ in range(iters):
D
Dang Qingqing 已提交
231
                data = next(train_reader())
D
Dang Qingqing 已提交
232 233 234
                loss_v = exe.run(program=main,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
235
                print('{}: {}'.format('loss' + dev_name + quant_type, loss_v))
D
Dang Qingqing 已提交
236 237

        with fluid.program_guard(test_program):
D
Dang Qingqing 已提交
238
            test_data = next(test_reader())
239 240
            w_var = fluid.framework._get_var('conv2d_1.w_0.quantized',
                                             test_program)
D
Dang Qingqing 已提交
241
            # Testing during training
242 243 244
            test_loss1, w_quant = exe.run(program=test_program,
                                          feed=feeder.feed(test_data),
                                          fetch_list=[loss, w_var])
D
Dang Qingqing 已提交
245 246 247

            # Freeze program for inference, but the weight of fc/conv is still float type.
            quant_transpiler.freeze_program(test_program, place)
248 249 250
            test_loss2, = exe.run(program=test_program,
                                  feed=feeder.feed(test_data),
                                  fetch_list=[loss])
Q
qingqing01 已提交
251
            self.assertAlmostEqual(test_loss1, test_loss2, delta=5e-3)
252 253 254 255
            print('{}: {}'.format('test_loss1' + dev_name + quant_type,
                                  test_loss1))
            print('{}: {}'.format('test_loss2' + dev_name + quant_type,
                                  test_loss2))
D
Dang Qingqing 已提交
256 257
            w_freeze = np.array(fluid.global_scope().find_var('conv2d_1.w_0')
                                .get_tensor())
258 259
            # fail: -432.0 != -433.0, this is due to the calculation precision
            #self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
D
Dang Qingqing 已提交
260

261 262 263 264
            print('{}: {}'.format('w_freeze' + dev_name + quant_type,
                                  np.sum(w_freeze)))
            print('{}: {}'.format('w_quant' + dev_name + quant_type,
                                  np.sum(w_quant)))
D
Dang Qingqing 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278
            # Convert parameter to 8-bit.
            quant_transpiler.convert_to_int8(test_program, place)
            # Save the 8-bit parameter and model file.
            fluid.io.save_inference_model('model_8bit', ['image', 'label'],
                                          [loss], exe, test_program)
            # Test whether the 8-bit parameter and model file can be loaded successfully.
            [infer, feed, fetch] = fluid.io.load_inference_model('model_8bit',
                                                                 exe)
            # Check the loaded 8-bit weight.
            w_8bit = np.array(fluid.global_scope().find_var('conv2d_1.w_0.int8')
                              .get_tensor())

            self.assertEqual(w_8bit.dtype, np.int8)
            self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))
279 280 281 282
            print('{}: {}'.format('w_8bit' + dev_name + quant_type,
                                  np.sum(w_8bit)))
            print('{}: {}'.format('w_freeze' + dev_name + quant_type,
                                  np.sum(w_freeze)))
D
Dang Qingqing 已提交
283

284
    def test_freeze_program_cuda(self):
285
        if fluid.core.is_compiled_with_cuda():
D
Dang Qingqing 已提交
286
            with fluid.unique_name.guard():
287
                self.freeze_program(True, seed=1)
288

289
    def test_freeze_program_cpu(self):
D
Dang Qingqing 已提交
290
        with fluid.unique_name.guard():
291
            self.freeze_program(False, seed=2)
D
Dang Qingqing 已提交
292 293 294 295


if __name__ == '__main__':
    unittest.main()