test_quantize_transpiler.py 11.2 KB
Newer Older
D
Dang Qingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import numpy as np
16 17
import six

D
Dang Qingqing 已提交
18 19 20
import unittest
import paddle
import paddle.fluid as fluid
21 22
from paddle.fluid.contrib.quantize.quantize_transpiler import _original_var_name
from paddle.fluid.contrib.quantize.quantize_transpiler import QuantizeTranspiler
D
Dang Qingqing 已提交
23 24 25 26 27 28


def linear_fc(num):
    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
29
    for _ in six.moves.xrange(num):
D
Dang Qingqing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        hidden = fluid.layers.fc(hidden, size=128, act='relu')
    loss = fluid.layers.cross_entropy(input=hidden, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def residual_block(num):
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr)
        return fluid.layers.batch_norm(input=tmp, act=act)

    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
57
    for _ in six.moves.xrange(num):
D
Dang Qingqing 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
        short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
        hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
    fc = fluid.layers.fc(input=hidden, size=10)
    loss = fluid.layers.cross_entropy(input=fc, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    return avg_loss


class TestQuantizeTranspiler(unittest.TestCase):
    def setUp(self):
        # since quant_op and dequant_op is not ready, use cos and sin for test
        self.weight_quant_op_type = 'fake_quantize_abs_max'
        self.dequant_op_type = 'fake_dequantize_max_abs'
        self.quantizable_op_and_inputs = {
            'conv2d': ['Input', 'Filter'],
            'depthwise_conv2d': ['Input', 'Filter'],
            'mul': ['X', 'Y']
        }
        self.quantizable_op_grad_and_inputs = {
            'conv2d_grad': ['Input', 'Filter'],
            'depthwise_conv2d_grad': ['Input', 'Filter'],
            'mul_grad': ['X', 'Y']
        }

    def check_program(self, program):
        quantized_ops = {}

        persistable_vars = [
            v.name
            for v in filter(lambda var: var.persistable, program.list_vars())
        ]

        for block in program.blocks:
            for idx, op in enumerate(block.ops):
                # check forward
                if op.type in self.quantizable_op_and_inputs:
                    for i, arg_name in enumerate(op.input_arg_names):
                        quant_op_type = self.weight_quant_op_type if \
                            _original_var_name(arg_name) \
                            in persistable_vars else self.act_quant_op_type
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        if arg_name not in quantized_ops:
                            self.assertEqual(block.ops[idx - 2 * i - 1].type,
                                             self.dequant_op_type)
                            self.assertEqual(block.ops[idx - 2 * i - 2].type,
                                             quant_op_type)
                            quantized_ops[arg_name] = block.ops[idx - 2 * i - 2]
                        else:
                            op_idx = block.ops.index(quantized_ops[arg_name])
                            self.assertLess(op_idx, idx)

                # check backward
                if op.type in self.quantizable_op_grad_and_inputs:
                    for pname in self.quantizable_op_grad_and_inputs[op.type]:
                        arg_name = op.input(pname)[0]
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        self.assertTrue(arg_name in quantized_ops)

    def linear_fc_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = linear_fc(3)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
148
            t = QuantizeTranspiler(activation_quantize_type=quant_type)
D
Dang Qingqing 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            t.training_transpile(main)
            self.check_program(main)

    def test_linear_fc_quant_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.linear_fc_quant('abs_max')

    def test_linear_fc_quant_range_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.linear_fc_quant('range_abs_max')

    def residual_block_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = residual_block(2)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
167
            t = QuantizeTranspiler(activation_quantize_type=quant_type)
D
Dang Qingqing 已提交
168 169 170 171 172 173 174 175 176 177 178 179
            t.training_transpile(main)
            self.check_program(main)

    def test_residual_block_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.residual_block_quant('abs_max')

    def test_residual_block_range_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.residual_block_quant('range_abs_max')

    def freeze_program(self, use_cuda):
180 181 182 183 184 185 186 187 188 189 190 191 192
        def build_program(main, startup, is_test):
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.001)
                        opt.minimize(loss)
            return [img, label], loss

D
Dang Qingqing 已提交
193 194
        main = fluid.Program()
        startup = fluid.Program()
195
        test_program = fluid.Program()
D
Dang Qingqing 已提交
196

197 198 199 200 201 202 203
        feeds, loss = build_program(main, startup, True)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)

        quant_transpiler = QuantizeTranspiler()
        quant_transpiler.training_transpile(main)
        quant_transpiler.training_transpile(test_program)
D
Dang Qingqing 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        iter = 5
        batch_size = 8
        class_num = 10
        exe.run(startup)

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
218
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
D
Dang Qingqing 已提交
219

D
Dang Qingqing 已提交
220 221
        with fluid.program_guard(main):
            for _ in range(iter):
D
Dang Qingqing 已提交
222
                data = next(train_reader())
D
Dang Qingqing 已提交
223 224 225 226 227
                loss_v = exe.run(program=main,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])

        with fluid.program_guard(test_program):
D
Dang Qingqing 已提交
228
            test_data = next(test_reader())
D
Dang Qingqing 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            f_var = fluid.framework.get_var('conv2d_1.tmp_0', test_program)
            w_var = fluid.framework.get_var('conv2d_1.w_0.quantized',
                                            test_program)
            # Testing during training
            test_loss1, f_v1, w_quant = exe.run(
                program=test_program,
                feed=feeder.feed(test_data),
                fetch_list=[loss, f_var, w_var])

            # Freeze program for inference, but the weight of fc/conv is still float type.
            quant_transpiler.freeze_program(test_program, place)
            fv2 = fluid.framework.get_var('conv2d_1.tmp_0.dequantized',
                                          test_program)
            test_loss2, f_v2 = exe.run(program=test_program,
                                       feed=feeder.feed(test_data),
                                       fetch_list=[loss, fv2])
            self.assertAlmostEqual(test_loss1, test_loss2, delta=1e-3)
246 247
            self.assertTrue(
                np.allclose(
D
Dang Qingqing 已提交
248
                    f_v1, f_v2, rtol=1e-03, atol=1e-03),
249
                "There is diff: " + str(f_v1) + "\n" + str(f_v2))
D
Dang Qingqing 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            w_freeze = np.array(fluid.global_scope().find_var('conv2d_1.w_0')
                                .get_tensor())
            self.assertEqual(np.sum(w_freeze), np.sum(w_quant))

            # Convert parameter to 8-bit.
            quant_transpiler.convert_to_int8(test_program, place)
            # Save the 8-bit parameter and model file.
            fluid.io.save_inference_model('model_8bit', ['image', 'label'],
                                          [loss], exe, test_program)
            # Test whether the 8-bit parameter and model file can be loaded successfully.
            [infer, feed, fetch] = fluid.io.load_inference_model('model_8bit',
                                                                 exe)
            # Check the loaded 8-bit weight.
            w_8bit = np.array(fluid.global_scope().find_var('conv2d_1.w_0.int8')
                              .get_tensor())

            self.assertEqual(w_8bit.dtype, np.int8)
            self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))
D
Dang Qingqing 已提交
268 269

    def test_freeze_program_cuda(self):
270
        if fluid.core.is_compiled_with_cuda():
D
Dang Qingqing 已提交
271 272
            with fluid.unique_name.guard():
                self.freeze_program(True)
273 274

    def test_freeze_program_cpu(self):
D
Dang Qingqing 已提交
275 276
        with fluid.unique_name.guard():
            self.freeze_program(False)
D
Dang Qingqing 已提交
277 278 279 280


if __name__ == '__main__':
    unittest.main()