group_norm_op.cu 25.6 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
20
namespace cub = hipcub;
21 22
#endif

D
Dun 已提交
23
#include "paddle/fluid/operators/group_norm_op.h"
24 25
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
D
Dun 已提交
26 27 28 29

namespace paddle {
namespace operators {

30
using DataLayout = framework::DataLayout;
31
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };
32
#define ALIGN_BYTES 16
33

P
peizhilin 已提交
34 35 36
#define CHECK_CASE(i, flags, kernel_name, ...)                              \
  if (i == flags) {                                                         \
    kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
37 38 39 40 41 42
  }

// 0 for no scale, no bias
// 1 for has scale, no bias
// 2 for no scale, has bias
// 3 for has scale, has bias
P
peizhilin 已提交
43 44 45 46 47
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
  CHECK_CASE(0, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(1, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(2, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
48 49 50 51 52 53 54 55 56

template <typename T>
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
  typedef cub::WarpReduce<T> WarpReduce;
  typename WarpReduce::TempStorage temp_storage;
  value = WarpReduce(temp_storage).Sum(value);
  if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
}

D
Dun 已提交
57
template <typename T>
58
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
D
Dun 已提交
59
                                              int imsize, int groups,
60
                                              int group_size, T* mean, T* var) {
D
Dun 已提交
61 62 63
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
64
  int H = imsize / W;
D
Dun 已提交
65 66 67 68 69
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = 0, x_var = 0;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
70
    T val;
71 72 73 74
    int hid = imid / W;
    int wid = imid % W;
    val = x[(bid * H + hid) * W * C + wid * C + ccid];

D
Dun 已提交
75 76 77 78 79
    x_mean += val;
    x_var += val * val;
  }
  x_mean /= number * imsize;
  x_var /= number * imsize;
80 81
  CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
  CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
D
Dun 已提交
82 83
}

84 85 86 87 88 89 90 91 92
template <typename T, typename AccT, int VecSize, int Num>
__device__ __forceinline__ void ThreadReduce(phi::Array<const T*, Num> arrs,
                                             int size, const int offset,
                                             AccT* out_mean, AccT* out_var) {
  const T* x = arrs[0];
  const T* y;
  if (Num == 2) {
    y = arrs[1];
  }
93 94 95
  using VecT = kps::details::VectorType<T, VecSize>;
  int tid = threadIdx.x;
  if (offset > 0) {
96 97 98 99
    x -= offset;
    if (Num == 2) {
      y -= offset;
    }
100 101
    size += offset;
    if (tid >= offset) {
102 103 104 105 106 107 108
      if (Num == 1) {
        *out_mean += x[tid];
        *out_var += x[tid] * x[tid];
      } else if (Num == 2) {
        *out_mean += y[tid];
        *out_var += y[tid] * x[tid];
      }
109 110
    }
    size -= blockDim.x;
111 112 113 114
    x += blockDim.x;
    if (Num == 2) {
      y += blockDim.x;
    }
115 116 117
  }
  int remain = size % (VecSize * blockDim.x);

118 119 120 121
  T ins_x[VecSize];
  T ins_y[VecSize];
  VecT* ins_vec_x = reinterpret_cast<VecT*>(&ins_x);
  VecT* ins_vec_y = reinterpret_cast<VecT*>(&ins_y);
122 123 124

  // vector part
  for (; VecSize * tid < (size - remain); tid += blockDim.x) {
125 126 127 128
    *ins_vec_x = reinterpret_cast<const VecT*>(x)[tid];
    if (Num == 2) {
      *ins_vec_y = reinterpret_cast<const VecT*>(y)[tid];
    }
129 130 131

#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
132 133 134 135 136 137 138
      if (Num == 1) {
        *out_mean += ins_x[i];
        *out_var += ins_x[i] * ins_x[i];
      } else if (Num == 2) {
        *out_mean += ins_y[i];
        *out_var += ins_y[i] * ins_x[i];
      }
139 140 141 142 143 144
    }
  }

  // scalar part
  tid = size - remain + threadIdx.x;
  for (; tid < size; tid += blockDim.x) {
145 146 147 148 149 150 151
    if (Num == 1) {
      *out_mean += x[tid];
      *out_var += x[tid] * x[tid];
    } else if (Num == 2) {
      *out_mean += y[tid];
      *out_var += y[tid] * x[tid];
    }
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  }
}

template <typename T>
__global__ void ScalarGetMeanAndVarNCHW(const T* x, T* mean, T* var, int size) {
  int i = blockIdx.x;
  T x_mean = 0, x_var = 0;
  for (int j = threadIdx.x; j < size; j += blockDim.x) {
    T val;
    val = x[i * size + j];
    x_mean += val;
    x_var += val * val;
  }
  x_mean /= size;
  x_var /= size;
  CudaAtomicAddWithWarp(&mean[i], x_mean);
  CudaAtomicAddWithWarp(&var[i], x_var);
}

template <typename T, typename AccT, int VecSize>
__global__ void VectorizedGetMeanAndVarNCHW(const T* x, T* mean, T* var,
                                            int size) {
  int i = blockIdx.x;
  AccT x_mean = static_cast<AccT>(0);
  AccT x_var = static_cast<AccT>(0);
  const int input_offset = ((uint64_t)x) % ALIGN_BYTES / sizeof(T);
  x += i * size;
179 180 181 182
  phi::Array<const T*, 1> ins;
  ins[0] = x;
  ThreadReduce<T, AccT, VecSize, 1>(ins, size, input_offset, &x_mean, &x_var);

183 184 185 186 187 188 189 190 191 192 193
  x_mean = kps::details::BlockXReduce<AccT, kps::AddFunctor<AccT>>(
      x_mean, kps::AddFunctor<AccT>());
  x_var = kps::details::BlockXReduce<AccT, kps::AddFunctor<AccT>>(
      x_var, kps::AddFunctor<AccT>());
  __syncthreads();
  if (threadIdx.x == 0) {
    mean[i] = static_cast<T>(x_mean / size);
    var[i] = static_cast<T>(x_var / size);
  }
}

194
template <typename T, int flags>
D
Dun 已提交
195 196
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
                                 const T* scale, const T* bias, int N, int C,
197 198 199
                                 int W, int imsize, int groups, int group_size,
                                 T epsilon, T* y, T* real_var,
                                 const DataLayout data_layout) {
D
Dun 已提交
200 201 202
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
203
  int H = imsize / W;
D
Dun 已提交
204 205
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
206 207 208
  auto ng = bid * groups + gid;
  T x_mean = mean[ng];
  T x_var = var[ng];
D
Dun 已提交
209
  x_var = x_var - x_mean * x_mean;
210 211 212 213
  T var_inv = rsqrt(x_var + epsilon);
  if (cid == 0 && threadIdx.x == 0) {
    real_var[ng] = x_var;
  }
D
Dun 已提交
214
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
215 216
    T val;
    int hid, wid;
217
    int index = (bid * C + ccid) * imsize + imid;
218
    if (data_layout == DataLayout::kNCHW) {
219
      val = x[index];
220 221 222 223 224
    } else {
      hid = imid / W;
      wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
225
    val = (val - x_mean) * var_inv;
226 227 228 229 230 231
    if (flags & kHasScale) {
      val *= scale[ccid];
    }
    if (flags & kHasBias) {
      val += bias[ccid];
    }
232
    if (data_layout == DataLayout::kNCHW) {
233
      y[index] = val;
234 235 236
    } else {
      y[(bid * H + hid) * W * C + wid * C + ccid] = val;
    }
D
Dun 已提交
237 238 239 240 241 242 243 244
  }
}

template <typename T>
class GroupNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
245 246 247
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
248 249 250 251 252 253 254 255 256 257 258
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
259 260 261
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
262 263
    const int group_size = C / groups;

264 265 266
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
267 268 269 270

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());
271
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
D
Dun 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());

    set_zero(dev_ctx, mean, static_cast<T>(0));
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();
    auto* temp_var_data = temp_var.data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

290 291 292 293 294 295 296 297 298 299
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
300

R
ronnywang 已提交
301 302 303
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
#else
304
    int block_size = std::min(1024, imsize);
R
ronnywang 已提交
305
#endif
306

D
Dun 已提交
307 308
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    if (data_layout == DataLayout::kNCHW) {
      using AccT = typename details::MPTypeTrait<T>::Type;
      constexpr int vec_size = sizeof(float4) / sizeof(T);
      int size = group_size * imsize;
      const int max_num_threads = 1024;
      int max_block_size = std::min(size / vec_size, max_num_threads);
      int block_size_nchw = 1;
      while (block_size_nchw < max_block_size) {
        block_size_nchw *= 2;
      }
      block_size_nchw = std::max(block_size_nchw, kps::details::kWarpSize);
      dim3 grids(x_dims[0] * groups);
      dim3 blocks(block_size_nchw);
      if (size < vec_size) {
        ScalarGetMeanAndVarNCHW<T><<<grids, blocks, 0, dev_ctx.stream()>>>(
            x_data, mean_data, temp_var_data, size);
      } else {
        VectorizedGetMeanAndVarNCHW<
            T, AccT, vec_size><<<grids, blocks, 0, dev_ctx.stream()>>>(
            x_data, mean_data, temp_var_data, size);
      }
    } else {
      GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
          x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
          temp_var_data);
    }
335 336 337
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
338 339
                     scale_data, bias_data, x_dims[0], C, W, imsize, groups,
                     group_size, epsilon, y_data, var_data, data_layout);
D
Dun 已提交
340 341 342
  }
};

343
template <typename T, int flags>
344 345 346 347 348 349
__global__ void GroupNormBackwardGetMeanAndVar(const T* x, const T* scale,
                                               const T* bias, const T* d_y,
                                               int N, int C, int W, int imsize,
                                               int groups, int group_size,
                                               T epsilon, T* d_mean, T* d_var,
                                               T* d_scale, T* d_bias) {
D
Dun 已提交
350 351 352
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
353
  int H = imsize / W;
D
Dun 已提交
354 355 356
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
357 358 359 360
  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
361 362 363
  T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
364
    T val, dval;
365 366 367 368 369

    int hid = imid / W;
    int wid = imid % W;
    val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
    dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
D
Dun 已提交
370

371 372 373 374 375 376
    d_var_data += val * dval;
    d_mean_data += dval * x_scale;

    val = val * x_scale_inv;
    d_bias_data += dval;
    d_scale_data += val * dval;
D
Dun 已提交
377
  }
378 379 380 381
  CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data);
  CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data);
  if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data);
  if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data);
D
Dun 已提交
382 383
}

384 385 386
template <typename T, int flags>
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
                                  const T* bias, const T* var, const T* d_mean,
387 388
                                  const T* d_var, int N, int C, int W,
                                  int imsize, int groups, int group_size,
389
                                  T epsilon, T* d_x) {
D
Dun 已提交
390 391 392
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
393
  int H = imsize / W;
D
Dun 已提交
394 395 396 397 398
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_var = var[bid * groups + gid];
  T d_x_mean = d_mean[bid * groups + gid];
399 400 401 402 403 404 405 406 407
  T d_x_var = d_var[bid * groups + gid];

  T x_var_inv = 1.0 / sqrt(x_var + epsilon);
  T number_inv = 1.0 / (number * imsize);

  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
408 409

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    int hid = imid / W;
    int wid = imid % W;
    T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
    T v_y = (tmp - x_bias) * x_scale_inv;
    T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
    d_x[(bid * H + hid) * W * C + wid * C + ccid] =
        x_var_inv *
        (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
  }
}

template <typename T, typename AccT, int VecSize>
__global__ void VectorizedGetDsDbCUDAKernel(int imsize, const T* x, const T* dy,
                                            T* ds, T* db) {
  int i = blockIdx.x;
  AccT ds_sum = static_cast<AccT>(0);
  AccT db_sum = static_cast<AccT>(0);
  const int input_offset = ((uint64_t)x) % ALIGN_BYTES / sizeof(T);
  x += i * imsize;

  phi::Array<const T*, 2> ins;
  ins[0] = x;
  ins[1] = dy;
  ThreadReduce<T, AccT, VecSize, 2>(ins, imsize, input_offset, &db_sum,
                                    &ds_sum);

  ds_sum = kps::details::BlockXReduce<AccT, kps::AddFunctor<AccT>>(
      ds_sum, kps::AddFunctor<AccT>());
  db_sum = kps::details::BlockXReduce<AccT, kps::AddFunctor<AccT>>(
      db_sum, kps::AddFunctor<AccT>());
  __syncthreads();
  if (threadIdx.x == 0) {
    ds[i] = ds_sum;
    db[i] = db_sum;
  }
}

template <typename T>
__global__ void ScalarGetDsDbCUDAKernel(int imsize, const T* x, const T* dy,
                                        T* ds, T* db) {
  const int nc = blockIdx.x;
  T ds_sum = 0;
  T db_sum = 0;
  for (int i = threadIdx.x; i < imsize; i += blockDim.x) {
    const int index = nc * imsize + i;
    ds_sum += dy[index] * x[index];
    db_sum += dy[index];
  }
  CudaAtomicAddWithWarp(&ds[nc], ds_sum);
  CudaAtomicAddWithWarp(&db[nc], db_sum);
}

template <typename T>
__global__ void GetScaleBiasGradientCUDAKernel(int N, int C, int group,
                                               T epsilon, const T* mean,
                                               const T* var, const T* ds,
                                               const T* db, T* d_scale,
                                               T* d_bias) {
  const int c = blockIdx.x * blockDim.x + threadIdx.x;
  if (c < C) {
    const int G = group;
    const int D = C / G;
    T sum1 = 0;
    T sum2 = 0;
    for (int n = 0; n < N; ++n) {
      const int nc = n * C + c;
      const int ng = n * G + c / D;
      sum1 += (d_scale == nullptr)
                  ? T(0)
                  : ((ds[nc] - db[nc] * static_cast<T>(mean[ng])) *
                     static_cast<T>(rsqrt(var[ng] + epsilon)));
      sum2 += (d_bias == nullptr) ? T(0) : db[nc];
    }
    if (d_scale != nullptr) {
      d_scale[c] = sum1;
    }
    if (d_bias != nullptr) {
      d_bias[c] = sum2;
488
    }
D
Dun 已提交
489 490 491
  }
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
template <typename T, int BlockDim>
__global__ void GetBackwardParamsCUDAKernel(int imsize, int groups,
                                            int group_size, T epsilon,
                                            const T* mean, const T* var,
                                            const T* scale, const T* ds,
                                            const T* db, T* p1, T* p2, T* p3) {
  const int n = blockIdx.x;
  const int g = blockIdx.y;
  const int ng = n * groups + g;
  T sum1 = 0;
  T sum2 = 0;
  T var_inv = rsqrt(var[ng] + epsilon);
  for (int64_t i = threadIdx.x; i < group_size; i += blockDim.x) {
    const int64_t index = ng * group_size + i;
    const int64_t c = g * group_size + i;
    const T scale_v = scale == nullptr ? T(1) : static_cast<T>(scale[c]);
    sum1 += ds[index] * scale_v;
    sum2 += db[index] * scale_v;
    const T scale_c = scale == nullptr ? T(0) : static_cast<T>(scale[c]);
    p1[index] = scale_c * var_inv;
  }

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;
  sum1 = BlockReduce(ds_storage).Reduce(sum1, cub::Sum());
  sum2 = BlockReduce(db_storage).Reduce(sum2, cub::Sum());

  if (threadIdx.x == 0) {
    const T s = T(1) / static_cast<T>(group_size * imsize);
    const T x = (sum2 * static_cast<T>(mean[ng]) - sum1) *
                static_cast<T>(var_inv) * static_cast<T>(var_inv) *
                static_cast<T>(var_inv) * s;
    p2[ng] = x;
    p3[ng] = -x * static_cast<T>(mean[ng]) - sum2 * static_cast<T>(var_inv) * s;
  }
}

template <typename T>
__global__ void GetXGradientCUDAKernel(int imsize, int C, int group_size,
                                       int groups, T* p1, T* p2, T* p3,
                                       const T* x, const T* dy, T* dx) {
  int cid = blockIdx.x;
  int gid = blockIdx.y;
  int bid = blockIdx.z;
  int ccid = bid * C + gid * group_size + cid;
  int ng = bid * groups + gid;
  int nc = gid * group_size + cid;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
    int index = (bid * C + nc) * imsize + imid;
    dx[index] = p1[ccid] * dy[index] + p2[ng] * x[index] + p3[ng];
  }
}

D
Dun 已提交
546 547 548 549 550
template <typename T>
class GroupNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
551 552 553
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
554
    const float epsilon = ctx.Attr<float>("epsilon");
555 556 557
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* mean = ctx.Input<Tensor>("Mean");
D
Dun 已提交
558 559
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
560
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
561 562 563 564 565 566 567 568 569
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
570 571 572
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
573
    const int group_size = C / groups;
574 575 576
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
577

578
    d_x->mutable_data<T>(ctx.GetPlace());
579
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
D
Dun 已提交
580 581
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

582 583 584 585 586
    Tensor ds, db;
    ds.mutable_data<T>({x_dims[0], C}, ctx.GetPlace());
    db.mutable_data<T>({x_dims[0], C}, ctx.GetPlace());
    T* ds_data = ds.data<T>();
    T* db_data = db.data<T>();
D
Dun 已提交
587

588
    auto* y_data = y->data<T>();
D
Dun 已提交
589
    auto* x_data = x->data<T>();
590 591
    T* d_x_data = nullptr;
    if (d_x) d_x_data = d_x->data<T>();
592
    auto* dy_data = d_y->data<T>();
D
Dun 已提交
593
    auto* var_data = var->data<T>();
594
    auto* mean_data = mean->data<T>();
D
Dun 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
608 609
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
610

611 612 613 614 615 616 617 618 619 620
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
621

R
ronnywang 已提交
622 623
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
624
    const int block_dims = 256;
R
ronnywang 已提交
625
#else
626
    int block_size = std::min(1024, imsize);
627
    const int block_dims = 1024;
R
ronnywang 已提交
628
#endif
D
Dun 已提交
629 630
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
631 632
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    if (data_layout == DataLayout::kNCHW) {
      using AccT = typename details::MPTypeTrait<T>::Type;
      constexpr int vec_size = sizeof(float4) / sizeof(T);
      const int max_num_threads = 1024;
      int max_block_size = std::min(imsize / vec_size, max_num_threads);
      int block_size_nchw = 1;
      while (block_size_nchw < max_block_size) {
        block_size_nchw *= 2;
      }
      block_size_nchw = std::max(block_size_nchw, kps::details::kWarpSize);
      dim3 blocks(block_size_nchw);
      if (imsize < vec_size) {
        if (d_scale) {
          set_zero(dev_ctx, d_scale, static_cast<T>(0));
        }
        if (d_bias) {
          set_zero(dev_ctx, d_bias, static_cast<T>(0));
        }
        ScalarGetDsDbCUDAKernel<
            T><<<x_dims[0] * C, blocks, 0, dev_ctx.stream()>>>(
            imsize, x_data, dy_data, ds_data, db_data);
      } else {
        VectorizedGetDsDbCUDAKernel<
            T, AccT, vec_size><<<x_dims[0] * C, blocks, 0, dev_ctx.stream()>>>(
            imsize, x_data, dy_data, ds_data, db_data);
      }

      if (d_scale || d_bias) {
        const int block = 256;
        GetScaleBiasGradientCUDAKernel<
            T><<<(C + block - 1) / block, block, 0, dev_ctx.stream()>>>(
            x_dims[0], C, groups, epsilon, mean_data, var_data, ds_data,
            db_data, d_scale_data, d_bias_data);
      }

      if (d_x_data != nullptr) {
        // p1 * dy + p2 * x + p3,
        // p1, p2, p3 represent the reverse calculation of temporary variables
        // p1 = scale * var_inv
        // p2 = (db * scale * mean - ds * scale) * pow(var_inv, 3) * (1/n)
        // p3 = -p2 * mean[ng] - db * scale * var_inv * (1/n);
        Tensor p1, p2, p3;
        p1.mutable_data<T>({x_dims[0] * C}, ctx.GetPlace());
        p2.mutable_data<T>({x_dims[0], groups}, ctx.GetPlace());
        p3.mutable_data<T>({x_dims[0], groups}, ctx.GetPlace());
        T* p1_data = p1.data<T>();
        T* p2_data = p2.data<T>();
        T* p3_data = p3.data<T>();

        GetBackwardParamsCUDAKernel<T, block_dims><<<
            dim3(x_dims[0], groups), block_dims, 0, dev_ctx.stream()>>>(
            imsize, groups, group_size, epsilon, mean_data, var_data,
            scale_data, ds_data, db_data, p1_data, p2_data, p3_data);
        GetXGradientCUDAKernel<T><<<grid, threads, 0, dev_ctx.stream()>>>(
            imsize, C, group_size, groups, p1_data, p2_data, p3_data, x_data,
            dy_data, d_x_data);
      }

    } else {
      if (d_scale) {
        set_zero(dev_ctx, d_scale, static_cast<T>(0));
      }
      if (d_bias) {
        set_zero(dev_ctx, d_bias, static_cast<T>(0));
      }

      Tensor temp_var;
      temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
      set_zero(dev_ctx, &temp_var, static_cast<T>(0));
      T* temp_var_data = temp_var.data<T>();

      Tensor temp_mean;
      temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
      set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
      T* temp_mean_data = temp_mean.data<T>();

      int flags = (scale_data != nullptr) * kHasScale +
                  (bias_data != nullptr) * kHasBias;
      UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, y_data,
                       scale_data, bias_data, dy_data, x_dims[0], C, W, imsize,
                       groups, group_size, epsilon, temp_mean_data,
                       temp_var_data, d_scale_data, d_bias_data);
      if (d_x_data != nullptr) {
        UNROLL_ALL_CASES(flags, GroupNormBackward, y_data, dy_data, scale_data,
                         bias_data, var_data, temp_mean_data, temp_var_data,
                         x_dims[0], C, W, imsize, groups, group_size, epsilon,
                         d_x_data);
      }
721
    }
D
Dun 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    group_norm,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);