group_norm_op.cu 14.8 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
20
namespace cub = hipcub;
21 22
#endif

D
Dun 已提交
23
#include "paddle/fluid/operators/group_norm_op.h"
24
#include "paddle/fluid/platform/cuda_device_function.h"
25
#include "paddle/fluid/platform/cuda_primitives.h"
D
Dun 已提交
26 27 28 29

namespace paddle {
namespace operators {

30
using DataLayout = framework::DataLayout;
31 32
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };

P
peizhilin 已提交
33 34 35
#define CHECK_CASE(i, flags, kernel_name, ...)                              \
  if (i == flags) {                                                         \
    kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
36 37 38 39 40 41
  }

// 0 for no scale, no bias
// 1 for has scale, no bias
// 2 for no scale, has bias
// 3 for has scale, has bias
P
peizhilin 已提交
42 43 44 45 46
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
  CHECK_CASE(0, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(1, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(2, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
47 48 49 50 51 52 53 54 55

template <typename T>
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
  typedef cub::WarpReduce<T> WarpReduce;
  typename WarpReduce::TempStorage temp_storage;
  value = WarpReduce(temp_storage).Sum(value);
  if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
}

D
Dun 已提交
56
template <typename T>
57
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
D
Dun 已提交
58
                                              int imsize, int groups,
59 60
                                              int group_size, T* mean, T* var,
                                              const DataLayout data_layout) {
D
Dun 已提交
61 62 63
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
64
  int H = imsize / W;
D
Dun 已提交
65 66 67 68 69
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = 0, x_var = 0;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
70 71 72 73 74 75 76 77
    T val;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid];
    } else {
      int hid = imid / W;
      int wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
78 79 80 81 82
    x_mean += val;
    x_var += val * val;
  }
  x_mean /= number * imsize;
  x_var /= number * imsize;
83 84
  CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
  CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
D
Dun 已提交
85 86
}

87
template <typename T, int flags>
D
Dun 已提交
88 89
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
                                 const T* scale, const T* bias, int N, int C,
90 91 92
                                 int W, int imsize, int groups, int group_size,
                                 T epsilon, T* y, T* real_var,
                                 const DataLayout data_layout) {
D
Dun 已提交
93 94 95
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
96
  int H = imsize / W;
D
Dun 已提交
97 98 99 100 101 102 103 104
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = mean[bid * groups + gid];
  T x_var = var[bid * groups + gid];
  x_var = x_var - x_mean * x_mean;
  T var_inv = 1.0 / sqrt(x_var + epsilon);
  if (cid == 0 && threadIdx.x == 0) real_var[bid * groups + gid] = x_var;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
105 106 107 108 109 110 111 112 113
    T val;
    int hid, wid;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid];
    } else {
      hid = imid / W;
      wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
114
    val = (val - x_mean) * var_inv;
115 116
    if (flags & kHasScale) val *= scale[gid * group_size + cid];
    if (flags & kHasBias) val += bias[gid * group_size + cid];
117 118 119 120 121
    if (data_layout == DataLayout::kNCHW) {
      y[(bid * C + ccid) * imsize + imid] = val;
    } else {
      y[(bid * H + hid) * W * C + wid * C + ccid] = val;
    }
D
Dun 已提交
122 123 124 125 126 127 128 129
  }
}

template <typename T>
class GroupNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
130 131 132
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
133 134 135 136 137 138 139 140 141 142 143
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
144 145 146 147 148 149 150
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());

    set_zero(dev_ctx, mean, static_cast<T>(0));
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();
    auto* temp_var_data = temp_var.data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

174 175 176 177 178 179 180 181 182 183
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
R
ronnywang 已提交
184 185 186
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
#else
187
    int block_size = std::min(1024, imsize);
R
ronnywang 已提交
188
#endif
D
Dun 已提交
189 190 191
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
    GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
192 193
        x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
        temp_var_data, data_layout);
194 195 196
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
197 198
                     scale_data, bias_data, x_dims[0], C, W, imsize, groups,
                     group_size, epsilon, y_data, var_data, data_layout);
D
Dun 已提交
199 200 201
  }
};

202
template <typename T, int flags>
203 204 205 206
__global__ void GroupNormBackwardGetMeanAndVar(
    const T* x, const T* scale, const T* bias, const T* d_y, int N, int C,
    int W, int imsize, int groups, int group_size, T epsilon, T* d_mean,
    T* d_var, T* d_scale, T* d_bias, const DataLayout data_layout) {
D
Dun 已提交
207 208 209
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
210
  int H = imsize / W;
D
Dun 已提交
211 212 213
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
214 215 216 217
  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
218 219 220
  T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
221 222 223 224 225 226 227 228 229 230
    T val, dval;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid] - x_bias;
      dval = d_y[(bid * C + ccid) * imsize + imid];
    } else {
      int hid = imid / W;
      int wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
      dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
231

232 233 234 235 236 237
    d_var_data += val * dval;
    d_mean_data += dval * x_scale;

    val = val * x_scale_inv;
    d_bias_data += dval;
    d_scale_data += val * dval;
D
Dun 已提交
238
  }
239 240 241 242
  CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data);
  CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data);
  if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data);
  if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data);
D
Dun 已提交
243 244
}

245 246 247
template <typename T, int flags>
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
                                  const T* bias, const T* var, const T* d_mean,
248 249 250 251
                                  const T* d_var, int N, int C, int W,
                                  int imsize, int groups, int group_size,
                                  T epsilon, T* d_x,
                                  const DataLayout data_layout) {
D
Dun 已提交
252 253 254
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
255
  int H = imsize / W;
D
Dun 已提交
256 257 258 259 260
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_var = var[bid * groups + gid];
  T d_x_mean = d_mean[bid * groups + gid];
261 262 263 264 265 266 267 268 269
  T d_x_var = d_var[bid * groups + gid];

  T x_var_inv = 1.0 / sqrt(x_var + epsilon);
  T number_inv = 1.0 / (number * imsize);

  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
270 271

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    if (data_layout == DataLayout::kNCHW) {
      T tmp = x[(bid * C + ccid) * imsize + imid];
      T v_y = (tmp - x_bias) * x_scale_inv;
      T dly = d_y[(bid * C + ccid) * imsize + imid];
      d_x[(bid * C + ccid) * imsize + imid] =
          x_var_inv *
          (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
    } else {
      int hid = imid / W;
      int wid = imid % W;
      T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
      T v_y = (tmp - x_bias) * x_scale_inv;
      T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
      d_x[(bid * H + hid) * W * C + wid * C + ccid] =
          x_var_inv *
          (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
    }
D
Dun 已提交
289 290 291 292 293 294 295 296
  }
}

template <typename T>
class GroupNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
297 298 299
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
300
    const float epsilon = ctx.Attr<float>("epsilon");
301
    auto* x = ctx.Input<Tensor>("Y");
D
Dun 已提交
302 303
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
304
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
305 306 307 308 309 310 311 312 313
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
314 315 316 317 318 319 320
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
321

322
    d_x->mutable_data<T>(ctx.GetPlace());
D
Dun 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));
    T* temp_var_data = temp_var.data<T>();

    Tensor temp_mean;
    temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
    set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
    T* temp_mean_data = temp_mean.data<T>();

    auto* x_data = x->data<T>();
337 338
    T* d_x_data = nullptr;
    if (d_x) d_x_data = d_x->data<T>();
D
Dun 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    auto* y_data = d_y->data<T>();
    auto* var_data = var->data<T>();
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_scale, static_cast<T>(0));
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_bias, static_cast<T>(0));
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
356 357
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
358

359 360 361 362 363 364 365 366 367 368
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
369

R
ronnywang 已提交
370 371 372
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
#else
373
    int block_size = std::min(1024, imsize);
R
ronnywang 已提交
374
#endif
D
Dun 已提交
375 376
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
377 378 379
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, x_data, scale_data,
380
                     bias_data, y_data, x_dims[0], C, W, imsize, groups,
381
                     group_size, epsilon, temp_mean_data, temp_var_data,
382
                     d_scale_data, d_bias_data, data_layout);
383 384 385
    if (d_x_data != nullptr) {
      UNROLL_ALL_CASES(flags, GroupNormBackward, x_data, y_data, scale_data,
                       bias_data, var_data, temp_mean_data, temp_var_data,
386 387
                       x_dims[0], C, W, imsize, groups, group_size, epsilon,
                       d_x_data, data_layout);
388
    }
D
Dun 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    group_norm,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);