math_function_impl.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16
#include <memory>
17
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/math/math_function.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {

25 26
using framework::To32BitIndex;

Q
QI JUN 已提交
27 28 29 30
template <typename DeviceContext, typename T>
void SetConstant<DeviceContext, T>::operator()(const DeviceContext& context,
                                               framework::Tensor* tensor,
                                               T num) {
31 32 33 34 35 36 37 38 39 40 41 42
  bool xpu_place = false;
#ifdef PADDLE_WITH_XPU
  if (context.GetPlace() == platform::XPUPlace()) {
    xpu_place = true;
    framework::VisitDataType(tensor->type(),
                             TensorSetConstantXPU<T>(tensor, num));
  }
#endif
  if (!xpu_place) {
    auto t = framework::EigenVector<T>::Flatten(*tensor);
    t.device(*context.eigen_device()) = t.constant(static_cast<T>(num));
  }
43 44
}

Q
QI JUN 已提交
45 46 47
template <typename DeviceContext, typename T, int Rank>
void Transpose<DeviceContext, T, Rank>::operator()(
    const DeviceContext& context, const framework::Tensor& in,
48 49 50 51 52 53 54
    framework::Tensor* out, const std::vector<int>& axis) {
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
  auto eigen_in = framework::EigenTensor<T, Rank>::From(in);
  auto eigen_out = framework::EigenTensor<T, Rank>::From(*out);
Q
QI JUN 已提交
55
  auto* dev = context.eigen_device();
56 57 58 59 60 61 62 63 64
  // use 32bit index to speed up computation
  bool use_32bit_index = eigen_out.size() < Eigen::NumTraits<int>::highest();
  bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
  if (use_32bit_index && is_gpu_place) {
    To32BitIndex(eigen_out).device(*dev) =
        To32BitIndex(eigen_in).shuffle(permute);
  } else {
    eigen_out.device(*dev) = eigen_in.shuffle(permute);
  }
65
}
66

Q
QI JUN 已提交
67 68 69
template <typename DeviceContext, typename T>
void ColwiseSum<DeviceContext, T>::operator()(const DeviceContext& context,
                                              const framework::Tensor& input,
Y
Yu Yang 已提交
70
                                              framework::Tensor* out) {
71 72
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
73 74 75 76 77 78
  PADDLE_ENFORCE_EQ(out->numel(), size,
                    platform::errors::InvalidArgument(
                        "The size of output tensor "
                        "should be equal to the size of input tensor column"
                        " dimension. Expected output size=%d, but received %d",
                        size, out->numel()));
79 80

  auto in = framework::EigenMatrix<T>::From(input);
Y
Yu Yang 已提交
81 82 83
  auto vec = framework::EigenVector<T>::Flatten(*out);

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{0}}));
84
}
85

Y
Yu Yang 已提交
86 87 88 89 90 91 92 93 94 95 96
// Specialize for CPU, since Eigen implement a general reduce. However,
// colwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class ColwiseSum<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    auto& in_dims = input.dims();
    auto height = in_dims[0];
    auto size = in_dims[1];
97 98 99 100 101 102 103
    PADDLE_ENFORCE_EQ(
        out->numel(), size,
        platform::errors::InvalidArgument(
            "The size of output tensor "
            "should be equal to the size of input tensor column"
            " dimension. Expected output size=%d, but received %d",
            size, out->numel()));
Y
Yu Yang 已提交
104 105 106 107

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

Q
qiaolongfei 已提交
108 109
    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118 119
        if (i == 0) {
          out_buf[j] = in_buf[i * size + j];
        } else {
          out_buf[j] += in_buf[i * size + j];
        }
      }
    }
  }
};

C
chengduoZH 已提交
120 121 122 123 124
template <typename DeviceContext, typename T>
void RowwiseMean<DeviceContext, T>::operator()(const DeviceContext& context,
                                               const framework::Tensor& input,
                                               framework::Tensor* out) {
  auto in_dims = input.dims();
125 126 127 128 129 130 131 132 133 134
  PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument(
                                            "The rank of input tensor "
                                            "should be 2, but received %d",
                                            in_dims.size()));
  PADDLE_ENFORCE_EQ(out->numel(), in_dims[0],
                    platform::errors::InvalidArgument(
                        "The size of output tensor "
                        "should be equal to the size of input tensor row"
                        " dimension. Expected output size=%d, but received %d",
                        in_dims[0], out->numel()));
C
chengduoZH 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  auto in = framework::EigenMatrix<T>::From(input);
  auto vec = framework::EigenVector<T>::Flatten(*out);

  vec.device(*context.eigen_device()) = in.mean(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class RowwiseMean<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    auto& in_dims = input.dims();
151 152 153 154
    PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument(
                                              "The rank of input tensor "
                                              "should be 2, but received %d",
                                              in_dims.size()));
C
chengduoZH 已提交
155 156
    auto height = in_dims[0];
    auto size = in_dims[1];
157 158 159 160 161 162 163
    PADDLE_ENFORCE_EQ(
        out->numel(), height,
        platform::errors::InvalidArgument(
            "The size of output tensor "
            "should be equal to the size of input tensor row"
            " dimension. Expected output size=%d, but received %d",
            height, out->numel()));
C
chengduoZH 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    auto inv_size = 1.0 / size;
    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum * inv_size;
    }
  }
};

template <typename DeviceContext, typename T>
void RowwiseSum<DeviceContext, T>::operator()(const DeviceContext& context,
                                              const framework::Tensor& input,
                                              framework::Tensor* out) {
  auto in_dims = input.dims();
183 184 185 186 187 188 189 190 191 192
  PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument(
                                            "The rank of input tensor "
                                            "should be 2, but received %d",
                                            in_dims.size()));
  PADDLE_ENFORCE_EQ(out->numel(), in_dims[0],
                    platform::errors::InvalidArgument(
                        "The size of output tensor "
                        "should be equal to the size of input tensor row"
                        " dimension. Expected output size=%d, but received %d",
                        in_dims[0], out->numel()));
C
chengduoZH 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

  auto in = framework::EigenMatrix<T>::From(input);
  auto vec = framework::EigenVector<T>::Flatten(*out);

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class RowwiseSum<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    auto& in_dims = input.dims();
209 210 211 212
    PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument(
                                              "The rank of input tensor "
                                              "should be 2, but received %d",
                                              in_dims.size()));
C
chengduoZH 已提交
213 214
    auto height = in_dims[0];
    auto size = in_dims[1];
215 216 217 218 219 220 221
    PADDLE_ENFORCE_EQ(
        out->numel(), height,
        platform::errors::InvalidArgument(
            "The size of output tensor "
            "should be equal to the size of input tensor row"
            " dimension. Expected output size=%d, but received %d",
            height, out->numel()));
C
chengduoZH 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum;
    }
  }
};

236 237 238
}  // namespace math
}  // namespace operators
}  // namespace paddle