/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { namespace math { using framework::To32BitIndex; template void SetConstant::operator()(const DeviceContext& context, framework::Tensor* tensor, T num) { bool xpu_place = false; #ifdef PADDLE_WITH_XPU if (context.GetPlace() == platform::XPUPlace()) { xpu_place = true; framework::VisitDataType(tensor->type(), TensorSetConstantXPU(tensor, num)); } #endif if (!xpu_place) { auto t = framework::EigenVector::Flatten(*tensor); t.device(*context.eigen_device()) = t.constant(static_cast(num)); } } template void Transpose::operator()( const DeviceContext& context, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { Eigen::array permute; for (int i = 0; i < Rank; i++) { permute[i] = axis[i]; } auto eigen_in = framework::EigenTensor::From(in); auto eigen_out = framework::EigenTensor::From(*out); auto* dev = context.eigen_device(); // use 32bit index to speed up computation bool use_32bit_index = eigen_out.size() < Eigen::NumTraits::highest(); bool is_gpu_place = platform::is_gpu_place(context.GetPlace()); if (use_32bit_index && is_gpu_place) { To32BitIndex(eigen_out).device(*dev) = To32BitIndex(eigen_in).shuffle(permute); } else { eigen_out.device(*dev) = eigen_in.shuffle(permute); } } template void ColwiseSum::operator()(const DeviceContext& context, const framework::Tensor& input, framework::Tensor* out) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(out->numel(), size, platform::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor column" " dimension. Expected output size=%d, but received %d", size, out->numel())); auto in = framework::EigenMatrix::From(input); auto vec = framework::EigenVector::Flatten(*out); vec.device(*context.eigen_device()) = in.sum(Eigen::array({{0}})); } // Specialize for CPU, since Eigen implement a general reduce. However, // colwise-sum can be easily implemented. General reduce has a huge overhead in // CPU template class ColwiseSum { public: void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* out) { auto& in_dims = input.dims(); auto height = in_dims[0]; auto size = in_dims[1]; PADDLE_ENFORCE_EQ( out->numel(), size, platform::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor column" " dimension. Expected output size=%d, but received %d", size, out->numel())); T* out_buf = out->mutable_data(out->place()); const T* in_buf = input.data(); for (size_t i = 0; i < static_cast(height); ++i) { for (size_t j = 0; j < static_cast(size); ++j) { if (i == 0) { out_buf[j] = in_buf[i * size + j]; } else { out_buf[j] += in_buf[i * size + j]; } } } } }; template void RowwiseMean::operator()(const DeviceContext& context, const framework::Tensor& input, framework::Tensor* out) { auto in_dims = input.dims(); PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument( "The rank of input tensor " "should be 2, but received %d", in_dims.size())); PADDLE_ENFORCE_EQ(out->numel(), in_dims[0], platform::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", in_dims[0], out->numel())); auto in = framework::EigenMatrix::From(input); auto vec = framework::EigenVector::Flatten(*out); vec.device(*context.eigen_device()) = in.mean(Eigen::array({{1}})); } // TODO(zcd): Following ColwiseSum format, need to confirm. // Specialize for CPU, since Eigen implement a general reduce. However, // rowwise-sum can be easily implemented. General reduce has a huge overhead in // CPU template class RowwiseMean { public: void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* out) { auto& in_dims = input.dims(); PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument( "The rank of input tensor " "should be 2, but received %d", in_dims.size())); auto height = in_dims[0]; auto size = in_dims[1]; PADDLE_ENFORCE_EQ( out->numel(), height, platform::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", height, out->numel())); auto inv_size = 1.0 / size; T* out_buf = out->mutable_data(out->place()); const T* in_buf = input.data(); for (size_t i = 0; i < static_cast(height); ++i) { T sum = 0; for (size_t j = 0; j < static_cast(size); ++j) { sum += in_buf[i * size + j]; } out_buf[i] = sum * inv_size; } } }; template void RowwiseSum::operator()(const DeviceContext& context, const framework::Tensor& input, framework::Tensor* out) { auto in_dims = input.dims(); PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument( "The rank of input tensor " "should be 2, but received %d", in_dims.size())); PADDLE_ENFORCE_EQ(out->numel(), in_dims[0], platform::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", in_dims[0], out->numel())); auto in = framework::EigenMatrix::From(input); auto vec = framework::EigenVector::Flatten(*out); vec.device(*context.eigen_device()) = in.sum(Eigen::array({{1}})); } // TODO(zcd): Following ColwiseSum format, need to confirm. // Specialize for CPU, since Eigen implement a general reduce. However, // rowwise-sum can be easily implemented. General reduce has a huge overhead in // CPU template class RowwiseSum { public: void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* out) { auto& in_dims = input.dims(); PADDLE_ENFORCE_EQ(in_dims.size(), 2U, platform::errors::InvalidArgument( "The rank of input tensor " "should be 2, but received %d", in_dims.size())); auto height = in_dims[0]; auto size = in_dims[1]; PADDLE_ENFORCE_EQ( out->numel(), height, platform::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", height, out->numel())); T* out_buf = out->mutable_data(out->place()); const T* in_buf = input.data(); for (size_t i = 0; i < static_cast(height); ++i) { T sum = 0; for (size_t j = 0; j < static_cast(size); ++j) { sum += in_buf[i * size + j]; } out_buf[i] = sum; } } }; } // namespace math } // namespace operators } // namespace paddle