prroi_pool_op.cu 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaximumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaximumNumBlocks);
}

template <typename T>
__global__ void GPUPRROIPoolForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int input_channels, const int height,
    const int width, const int output_channels, const int pooled_height,
    const int pooled_width, const int* rois_batch_id_data, T* output_data) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    // The output is in order (n, c, ph, pw)
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % output_channels;
    int n = i / pooled_width / pooled_height / output_channels;

    // set roi_batch_id
    int roi_batch_id = rois_batch_id_data[n];

    // [start, end) interval for spatial sampling
    const T* offset_input_rois = input_rois + n * 4;
    T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
    T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
    T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
    T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;

    T roi_width = max(roi_end_w - roi_start_w, static_cast<T>(0.0));
    T roi_height = max(roi_end_h - roi_start_h, static_cast<T>(0.0));

    // Compute w and h at input feature map
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    T win_start_w = roi_start_w + bin_size_w * pw;
    T win_start_h = roi_start_h + bin_size_h * ph;
    T win_end_w = win_start_w + bin_size_w;
    T win_end_h = win_start_h + bin_size_h;

    T win_size = max(static_cast<T>(0.0), bin_size_w * bin_size_h);
69
    int input_channel = c;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    const T* offset_input_data =
        input_data +
        (roi_batch_id * input_channels + input_channel) * height * width;

    if (win_size > static_cast<T>(0.0)) {
      int s_w = floor(win_start_w);
      int e_w = ceil(win_end_w);
      int s_h = floor(win_start_h);
      int e_h = ceil(win_end_h);
      T sum_out = 0;

      for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
        for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
          sum_out += PrRoIPoolingMatCalculation(
              offset_input_data, h_iter, w_iter, h_iter + 1, w_iter + 1,
              max(win_start_h, static_cast<T>(h_iter)),
              max(win_start_w, static_cast<T>(w_iter)),
              min(win_end_h, static_cast<T>(h_iter) + static_cast<T>(1.0)),
              min(win_end_w, static_cast<T>(w_iter) + static_cast<T>(1.0)),
              height, width);
        }
      }
      output_data[i] = sum_out / win_size;
    } else {
      output_data[i] = 0.;
    }
  }
}

template <typename T>
__global__ void GPUPRROIPoolBackward(
101 102 103 104 105 106
    const int nthreads, const T* in_data, const T* input_rois,
    const T* output_grad_data, const float spatial_scale,
    const int input_channels, const int height, const int width,
    const int output_channels, const int pooled_height, const int pooled_width,
    const int* rois_batch_id_data, T* input_grad_data, const T* out_data,
    T* input_roi_grad_data) {
107 108 109 110 111 112 113 114 115 116 117
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    // The output is in order (n, c, ph, pw)
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % output_channels;
    int n = i / pooled_width / pooled_height / output_channels;

    // set roi_batch_id
    int roi_batch_id = rois_batch_id_data[n];
118
    int input_channel = c;
119 120 121 122 123 124 125 126 127 128 129
    int input_offset =
        (roi_batch_id * input_channels + input_channel) * height * width;
    T* offset_input_grad_data = input_grad_data + input_offset;
    const T* offset_output_grad_data = output_grad_data + i;

    // [start, end) interval for spatial sampling
    const T* offset_input_rois = input_rois + n * 4;
    T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
    T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
    T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
    T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;
130
    T* offset_input_roi_grad_data = input_roi_grad_data + n * 4;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    T roi_width = max(roi_end_w - roi_start_w, static_cast<T>(0.0));
    T roi_height = max(roi_end_h - roi_start_h, static_cast<T>(0.0));

    // Compute w and h at input feature map
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    T win_start_w = roi_start_w + bin_size_w * pw;
    T win_start_h = roi_start_h + bin_size_h * ph;
    T win_end_w = win_start_w + bin_size_w;
    T win_end_h = win_start_h + bin_size_h;

    T win_size = max(static_cast<T>(0.0), bin_size_w * bin_size_h);
    int s_w = floor(win_start_w);
    int e_w = ceil(win_end_w);
    int s_h = floor(win_start_h);
    int e_h = ceil(win_end_h);

    T sum_out = win_size == static_cast<T>(0.)
                    ? static_cast<T>(0.)
                    : *offset_output_grad_data / win_size;

    for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
      for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
156
        PrRoIPoolingMatDistributeDiff<T>(
157 158 159 160 161
            offset_input_grad_data, sum_out, h_iter, w_iter, h_iter + 1,
            w_iter + 1, max(win_start_h, static_cast<T>(h_iter)),
            max(win_start_w, static_cast<T>(w_iter)),
            min(win_end_h, static_cast<T>(h_iter) + static_cast<T>(1.0)),
            min(win_end_w, static_cast<T>(w_iter) + static_cast<T>(1.0)),
162
            height, width);
163 164
      }
    }
165 166 167

    const T* offset_out_data = out_data + i;
    const T* offset_in_data = in_data + input_offset;
168
    PrRoIPoolingCoorBackward<T>(
169 170
        s_w, e_w, s_h, e_h, width, height, win_start_w, win_start_h, win_end_w,
        win_end_h, pw, ph, pooled_width, pooled_height, win_size, spatial_scale,
171
        offset_in_data, offset_out_data, offset_input_roi_grad_data,
172
        offset_output_grad_data);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  }
}

template <typename T>
class GPUPRROIPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int input_channels = in_dims[1];
191
    auto output_channels = input_channels;
192 193 194 195 196 197 198 199 200 201 202
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];
    if (rois_num == 0) return;

    // set rois batch id
    framework::Tensor rois_batch_id_list;
    rois_batch_id_list.Resize({rois_num});
    int* rois_batch_id_data =
        rois_batch_id_list.mutable_data<int>(platform::CPUPlace());
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

    if (ctx.HasInput("BatchRoINums") || rois->lod().empty()) {
      auto* batchroinum = ctx.Input<Tensor>("BatchRoINums");
      framework::Tensor batch_index_cpu;
      framework::TensorCopySync(*batchroinum, platform::CPUPlace(),
                                &batch_index_cpu);

      int rois_batch_size = batchroinum->dims()[0];
      auto* batch_index = batch_index_cpu.data<int64_t>();
      size_t c = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int64_t k = 0; k < batch_index[n]; ++k) {
          rois_batch_id_data[c] = n;
          c = c + 1;
        }
218 219
      }

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and input(X) batch_size must be the same."));
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The rois_num from input and lod must be the same."));

      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          rois_batch_id_data[i] = n;
        }
      }
    }
239 240 241 242 243

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

244 245 246 247 248
    auto cplace = platform::CPUPlace();
    auto& dev_ctx = ctx.cuda_device_context();
    int bytes = rois_batch_id_list.numel() * sizeof(int);
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
249
    const auto gplace = ctx.GetPlace();
250 251 252
    memory::Copy(gplace, roi_id_data, cplace, rois_batch_id_data, bytes,
                 dev_ctx.stream());

253
    // call cuda kernel function
254
    GPUPRROIPoolForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
255 256
        output_size, in->data<T>(), rois->data<T>(), spatial_scale,
        input_channels, height, width, output_channels, pooled_height,
257
        pooled_width, roi_id_data, out->mutable_data<T>(ctx.GetPlace()));
258 259 260 261 262 263 264 265 266
  }
};

template <typename DeviceContext, typename T>
class GPUPRROIPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
267
    auto* out = ctx.Input<framework::Tensor>("Out");
268 269 270

    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
271 272
    auto* input_roi_grad =
        ctx.Output<LoDTensor>(framework::GradVarName("ROIs"));
273 274 275 276 277 278 279

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    int rois_num = rois->dims()[0];
    int input_channels = in->dims()[1];
280
    auto output_channels = input_channels;
281 282 283
    int height = in->dims()[2];
    int width = in->dims()[3];

284
    if (input_grad || input_roi_grad) {
285 286 287 288 289
      // set roi batch id
      framework::Tensor rois_batch_id_list;
      rois_batch_id_list.Resize({rois_num});
      int* rois_batch_id_data =
          rois_batch_id_list.mutable_data<int>(platform::CPUPlace());
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

      if (ctx.HasInput("BatchRoINums") || rois->lod().empty()) {
        auto* batchroinum = ctx.Input<Tensor>("BatchRoINums");
        framework::Tensor batch_index_cpu;
        framework::TensorCopySync(*batchroinum, platform::CPUPlace(),
                                  &batch_index_cpu);

        int rois_batch_size = batchroinum->dims()[0];
        auto* batch_index = batch_index_cpu.data<int64_t>();
        size_t c = 0;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (int64_t k = 0; k < batch_index[n]; ++k) {
            rois_batch_id_data[c] = n;
            c = c + 1;
          }
        }
      } else {
        PADDLE_ENFORCE_EQ(rois->lod().empty(), false,
                          platform::errors::InvalidArgument(
T
tianshuo78520a 已提交
309
                              "the lod of Input ROIs should not be empty when "
310 311 312 313 314 315 316
                              "BatchRoINums is None!"));
        auto rois_lod = rois->lod().back();
        int rois_batch_size = rois_lod.size() - 1;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            rois_batch_id_data[i] = n;
          }
317 318 319
        }
      }

320 321 322 323 324
      auto cplace = platform::CPUPlace();
      auto& dev_ctx = ctx.cuda_device_context();
      int bytes = rois_batch_id_list.numel() * sizeof(int);
      auto roi_ptr = memory::Alloc(dev_ctx, bytes);
      int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
325
      const auto gplace = ctx.GetPlace();
326 327
      memory::Copy(gplace, roi_id_data, cplace, rois_batch_id_data, bytes,
                   dev_ctx.stream());
328 329 330 331

      input_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.cuda_device_context(), input_grad, static_cast<T>(0));
332 333
      input_roi_grad->mutable_data<T>(ctx.GetPlace());
      set_zero(ctx.cuda_device_context(), input_roi_grad, static_cast<T>(0));
334 335 336 337 338 339

      int output_grad_size = output_grad->numel();
      int blocks = NumBlocks(output_grad_size);
      int threads = kNumCUDAThreads;

      if (output_grad_size > 0) {
340
        GPUPRROIPoolBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
341 342
            output_grad_size, in->data<T>(), rois->data<T>(),
            output_grad->data<T>(), spatial_scale, input_channels, height,
343
            width, output_channels, pooled_height, pooled_width, roi_id_data,
344 345
            input_grad->mutable_data<T>(ctx.GetPlace()), out->data<T>(),
            input_roi_grad->mutable_data<T>(ctx.GetPlace()));
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(prroi_pool, ops::GPUPRROIPoolOpKernel<float>,
                        ops::GPUPRROIPoolOpKernel<double>);
REGISTER_OP_CUDA_KERNEL(
    prroi_pool_grad,
    ops::GPUPRROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUPRROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, double>);