bbox_util.cu.h 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
19
#ifdef __NVCC__
20
#include "cub/cub.cuh"
21 22 23
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
24
namespace cub = hipcub;
25
#endif
26 27
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
28
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))

int const kThreadsPerBlock = sizeof(uint64_t) * 8;

static const double kBBoxClipDefault = std::log(1000.0 / 16.0);

struct RangeInitFunctor {
  int start_;
  int delta_;
  int *out_;
  __device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
};

template <typename T>
static void SortDescending(const platform::CUDADeviceContext &ctx,
                           const Tensor &value, Tensor *value_out,
                           Tensor *index_out) {
  int num = static_cast<int>(value.numel());
  Tensor index_in_t;
  int *idx_in = index_in_t.mutable_data<int>({num}, ctx.GetPlace());
  platform::ForRange<platform::CUDADeviceContext> for_range(ctx, num);
  for_range(RangeInitFunctor{0, 1, idx_in});

  int *idx_out = index_out->mutable_data<int>({num}, ctx.GetPlace());

  const T *keys_in = value.data<T>();
  T *keys_out = value_out->mutable_data<T>({num}, ctx.GetPlace());

  // Determine temporary device storage requirements
  size_t temp_storage_bytes = 0;
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
68 69
      nullptr, temp_storage_bytes, keys_in, keys_out, idx_in, idx_out, num, 0,
      sizeof(T) * 8, ctx.stream());
70
  // Allocate temporary storage
71
  auto place = ctx.GetPlace();
72 73
  auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);

74
  // Run sorting operation
75 76
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
      d_temp_storage->ptr(), temp_storage_bytes, keys_in, keys_out, idx_in,
77
      idx_out, num, 0, sizeof(T) * 8, ctx.stream());
78 79 80 81 82 83 84 85 86
}

template <typename T>
struct BoxDecodeAndClipFunctor {
  const T *anchor;
  const T *deltas;
  const T *var;
  const int *index;
  const T *im_info;
87
  const bool pixel_offset;
88 89 90 91

  T *proposals;

  BoxDecodeAndClipFunctor(const T *anchor, const T *deltas, const T *var,
92 93
                          const int *index, const T *im_info, T *proposals,
                          bool pixel_offset = true)
94 95 96 97 98
      : anchor(anchor),
        deltas(deltas),
        var(var),
        index(index),
        im_info(im_info),
99 100
        proposals(proposals),
        pixel_offset(pixel_offset) {}
101 102 103 104 105 106 107 108 109 110

  T bbox_clip_default{static_cast<T>(kBBoxClipDefault)};

  __device__ void operator()(size_t i) {
    int k = index[i] * 4;
    T axmin = anchor[k];
    T aymin = anchor[k + 1];
    T axmax = anchor[k + 2];
    T aymax = anchor[k + 3];

111 112 113
    T offset = pixel_offset ? static_cast<T>(1.0) : 0;
    T w = axmax - axmin + offset;
    T h = aymax - aymin + offset;
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    T cx = axmin + 0.5 * w;
    T cy = aymin + 0.5 * h;

    T dxmin = deltas[k];
    T dymin = deltas[k + 1];
    T dxmax = deltas[k + 2];
    T dymax = deltas[k + 3];

    T d_cx, d_cy, d_w, d_h;
    if (var) {
      d_cx = cx + dxmin * w * var[k];
      d_cy = cy + dymin * h * var[k + 1];
      d_w = exp(Min(dxmax * var[k + 2], bbox_clip_default)) * w;
      d_h = exp(Min(dymax * var[k + 3], bbox_clip_default)) * h;
    } else {
      d_cx = cx + dxmin * w;
      d_cy = cy + dymin * h;
      d_w = exp(Min(dxmax, bbox_clip_default)) * w;
      d_h = exp(Min(dymax, bbox_clip_default)) * h;
    }

    T oxmin = d_cx - d_w * 0.5;
    T oymin = d_cy - d_h * 0.5;
137 138
    T oxmax = d_cx + d_w * 0.5 - offset;
    T oymax = d_cy + d_h * 0.5 - offset;
139

140 141 142 143
    proposals[i * 4] = Max(Min(oxmin, im_info[1] - offset), 0.);
    proposals[i * 4 + 1] = Max(Min(oymin, im_info[0] - offset), 0.);
    proposals[i * 4 + 2] = Max(Min(oxmax, im_info[1] - offset), 0.);
    proposals[i * 4 + 3] = Max(Min(oymax, im_info[0] - offset), 0.);
144 145 146 147 148 149 150 151 152 153 154
  }

  __device__ __forceinline__ T Min(T a, T b) const { return a > b ? b : a; }

  __device__ __forceinline__ T Max(T a, T b) const { return a > b ? a : b; }
};

template <typename T, int BlockSize>
static __global__ void FilterBBoxes(const T *bboxes, const T *im_info,
                                    const T min_size, const int num,
                                    int *keep_num, int *keep,
155 156
                                    bool is_scale = true,
                                    bool pixel_offset = true) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  T im_h = im_info[0];
  T im_w = im_info[1];

  int cnt = 0;
  __shared__ int keep_index[BlockSize];

  CUDA_KERNEL_LOOP(i, num) {
    keep_index[threadIdx.x] = -1;
    __syncthreads();

    int k = i * 4;
    T xmin = bboxes[k];
    T ymin = bboxes[k + 1];
    T xmax = bboxes[k + 2];
    T ymax = bboxes[k + 3];
172 173 174 175 176 177 178 179 180 181 182
    T offset = pixel_offset ? static_cast<T>(1.0) : 0;
    T w = xmax - xmin + offset;
    T h = ymax - ymin + offset;
    if (pixel_offset) {
      T cx = xmin + w / 2.;
      T cy = ymin + h / 2.;

      if (is_scale) {
        w = (xmax - xmin) / im_info[2] + 1.;
        h = (ymax - ymin) / im_info[2] + 1.;
      }
183

184 185 186 187 188 189 190
      if (w >= min_size && h >= min_size && cx <= im_w && cy <= im_h) {
        keep_index[threadIdx.x] = i;
      }
    } else {
      if (w >= min_size && h >= min_size) {
        keep_index[threadIdx.x] = i;
      }
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    }
    __syncthreads();
    if (threadIdx.x == 0) {
      int size = (num - i) < BlockSize ? num - i : BlockSize;
      for (int j = 0; j < size; ++j) {
        if (keep_index[j] > -1) {
          keep[cnt++] = keep_index[j];
        }
      }
    }
    __syncthreads();
  }
  if (threadIdx.x == 0) {
    keep_num[0] = cnt;
  }
}

208 209 210
static __device__ float IoU(const float *a, const float *b,
                            const bool pixel_offset = true) {
  float offset = pixel_offset ? static_cast<float>(1.0) : 0;
211 212
  float left = max(a[0], b[0]), right = min(a[2], b[2]);
  float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
213 214
  float width = max(right - left + offset, 0.f),
        height = max(bottom - top + offset, 0.f);
215
  float inter_s = width * height;
216 217
  float s_a = (a[2] - a[0] + offset) * (a[3] - a[1] + offset);
  float s_b = (b[2] - b[0] + offset) * (b[3] - b[1] + offset);
218 219 220 221 222
  return inter_s / (s_a + s_b - inter_s);
}

static __global__ void NMSKernel(const int n_boxes,
                                 const float nms_overlap_thresh,
223 224
                                 const float *dev_boxes, uint64_t *dev_mask,
                                 bool pixel_offset = true) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

  const int row_size =
      min(n_boxes - row_start * kThreadsPerBlock, kThreadsPerBlock);
  const int col_size =
      min(n_boxes - col_start * kThreadsPerBlock, kThreadsPerBlock);

  __shared__ float block_boxes[kThreadsPerBlock * 4];
  if (threadIdx.x < col_size) {
    block_boxes[threadIdx.x * 4 + 0] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 0];
    block_boxes[threadIdx.x * 4 + 1] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 1];
    block_boxes[threadIdx.x * 4 + 2] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 2];
    block_boxes[threadIdx.x * 4 + 3] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 3];
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = kThreadsPerBlock * row_start + threadIdx.x;
    const float *cur_box = dev_boxes + cur_box_idx * 4;
    int i = 0;
    uint64_t t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
256 257
      if (IoU(cur_box, block_boxes + i * 4, pixel_offset) >
          nms_overlap_thresh) {
258 259 260 261 262 263 264 265 266 267 268
        t |= 1ULL << i;
      }
    }
    const int col_blocks = DIVUP(n_boxes, kThreadsPerBlock);
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

template <typename T>
static void NMS(const platform::CUDADeviceContext &ctx, const Tensor &proposals,
                const Tensor &sorted_indices, const T nms_threshold,
269
                Tensor *keep_out, bool pixel_offset = true) {
270 271 272 273 274 275 276
  int boxes_num = proposals.dims()[0];
  const int col_blocks = DIVUP(boxes_num, kThreadsPerBlock);
  dim3 blocks(DIVUP(boxes_num, kThreadsPerBlock),
              DIVUP(boxes_num, kThreadsPerBlock));
  dim3 threads(kThreadsPerBlock);

  const T *boxes = proposals.data<T>();
277
  auto place = ctx.GetPlace();
278 279 280 281 282
  auto mask_ptr = memory::Alloc(ctx, boxes_num * col_blocks * sizeof(uint64_t));
  uint64_t *mask_dev = reinterpret_cast<uint64_t *>(mask_ptr->ptr());

  NMSKernel<<<blocks, threads, 0, ctx.stream()>>>(
      boxes_num, nms_threshold, boxes, mask_dev, pixel_offset);
283 284 285 286

  std::vector<uint64_t> remv(col_blocks);
  memset(&remv[0], 0, sizeof(uint64_t) * col_blocks);

287 288 289 290
  std::vector<uint64_t> mask_host(boxes_num * col_blocks);
  memory::Copy(platform::CPUPlace(), mask_host.data(), place, mask_dev,
               boxes_num * col_blocks * sizeof(uint64_t), ctx.stream());

291 292 293 294 295 296 297 298 299
  std::vector<int> keep_vec;
  int num_to_keep = 0;
  for (int i = 0; i < boxes_num; i++) {
    int nblock = i / kThreadsPerBlock;
    int inblock = i % kThreadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      ++num_to_keep;
      keep_vec.push_back(i);
300
      uint64_t *p = mask_host.data() + i * col_blocks;
301 302 303 304 305 306 307 308 309 310 311 312 313
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }
  int *keep = keep_out->mutable_data<int>({num_to_keep}, ctx.GetPlace());
  memory::Copy(place, keep, platform::CPUPlace(), keep_vec.data(),
               sizeof(int) * num_to_keep, ctx.stream());
  ctx.Wait();
}

}  // namespace operators
}  // namespace paddle