bbox_util.cu.h 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
19
#ifdef __NVCC__
20
#include "cub/cub.cuh"
21 22 23 24 25 26
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#include "paddle/fluid/platform/miopen_helper.h"
#endif
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))

int const kThreadsPerBlock = sizeof(uint64_t) * 8;

static const double kBBoxClipDefault = std::log(1000.0 / 16.0);

struct RangeInitFunctor {
  int start_;
  int delta_;
  int *out_;
  __device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
};

template <typename T>
static void SortDescending(const platform::CUDADeviceContext &ctx,
                           const Tensor &value, Tensor *value_out,
                           Tensor *index_out) {
  int num = static_cast<int>(value.numel());
  Tensor index_in_t;
  int *idx_in = index_in_t.mutable_data<int>({num}, ctx.GetPlace());
  platform::ForRange<platform::CUDADeviceContext> for_range(ctx, num);
  for_range(RangeInitFunctor{0, 1, idx_in});

  int *idx_out = index_out->mutable_data<int>({num}, ctx.GetPlace());

  const T *keys_in = value.data<T>();
  T *keys_out = value_out->mutable_data<T>({num}, ctx.GetPlace());

  // Determine temporary device storage requirements
  size_t temp_storage_bytes = 0;
67 68 69 70
#ifdef PADDLE_WITH_HIP
  hipcub::DeviceRadixSort::SortPairsDescending<T, int>(
      nullptr, temp_storage_bytes, keys_in, keys_out, idx_in, idx_out, num);
#else
71 72
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
      nullptr, temp_storage_bytes, keys_in, keys_out, idx_in, idx_out, num);
73
#endif
74 75 76 77
  // Allocate temporary storage
  auto place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
  auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);

78 79 80 81 82 83
// Run sorting operation
#ifdef PADDLE_WITH_HIP
  hipcub::DeviceRadixSort::SortPairsDescending<T, int>(
      d_temp_storage->ptr(), temp_storage_bytes, keys_in, keys_out, idx_in,
      idx_out, num);
#else
84 85 86
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
      d_temp_storage->ptr(), temp_storage_bytes, keys_in, keys_out, idx_in,
      idx_out, num);
87
#endif
88 89 90 91 92 93 94 95 96
}

template <typename T>
struct BoxDecodeAndClipFunctor {
  const T *anchor;
  const T *deltas;
  const T *var;
  const int *index;
  const T *im_info;
97
  const bool pixel_offset;
98 99 100 101

  T *proposals;

  BoxDecodeAndClipFunctor(const T *anchor, const T *deltas, const T *var,
102 103
                          const int *index, const T *im_info, T *proposals,
                          bool pixel_offset = true)
104 105 106 107 108
      : anchor(anchor),
        deltas(deltas),
        var(var),
        index(index),
        im_info(im_info),
109 110
        proposals(proposals),
        pixel_offset(pixel_offset) {}
111 112 113 114 115 116 117 118 119 120

  T bbox_clip_default{static_cast<T>(kBBoxClipDefault)};

  __device__ void operator()(size_t i) {
    int k = index[i] * 4;
    T axmin = anchor[k];
    T aymin = anchor[k + 1];
    T axmax = anchor[k + 2];
    T aymax = anchor[k + 3];

121 122 123
    T offset = pixel_offset ? static_cast<T>(1.0) : 0;
    T w = axmax - axmin + offset;
    T h = aymax - aymin + offset;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    T cx = axmin + 0.5 * w;
    T cy = aymin + 0.5 * h;

    T dxmin = deltas[k];
    T dymin = deltas[k + 1];
    T dxmax = deltas[k + 2];
    T dymax = deltas[k + 3];

    T d_cx, d_cy, d_w, d_h;
    if (var) {
      d_cx = cx + dxmin * w * var[k];
      d_cy = cy + dymin * h * var[k + 1];
      d_w = exp(Min(dxmax * var[k + 2], bbox_clip_default)) * w;
      d_h = exp(Min(dymax * var[k + 3], bbox_clip_default)) * h;
    } else {
      d_cx = cx + dxmin * w;
      d_cy = cy + dymin * h;
      d_w = exp(Min(dxmax, bbox_clip_default)) * w;
      d_h = exp(Min(dymax, bbox_clip_default)) * h;
    }

    T oxmin = d_cx - d_w * 0.5;
    T oymin = d_cy - d_h * 0.5;
147 148
    T oxmax = d_cx + d_w * 0.5 - offset;
    T oymax = d_cy + d_h * 0.5 - offset;
149

150 151 152 153
    proposals[i * 4] = Max(Min(oxmin, im_info[1] - offset), 0.);
    proposals[i * 4 + 1] = Max(Min(oymin, im_info[0] - offset), 0.);
    proposals[i * 4 + 2] = Max(Min(oxmax, im_info[1] - offset), 0.);
    proposals[i * 4 + 3] = Max(Min(oymax, im_info[0] - offset), 0.);
154 155 156 157 158 159 160 161 162 163 164
  }

  __device__ __forceinline__ T Min(T a, T b) const { return a > b ? b : a; }

  __device__ __forceinline__ T Max(T a, T b) const { return a > b ? a : b; }
};

template <typename T, int BlockSize>
static __global__ void FilterBBoxes(const T *bboxes, const T *im_info,
                                    const T min_size, const int num,
                                    int *keep_num, int *keep,
165 166
                                    bool is_scale = true,
                                    bool pixel_offset = true) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  T im_h = im_info[0];
  T im_w = im_info[1];

  int cnt = 0;
  __shared__ int keep_index[BlockSize];

  CUDA_KERNEL_LOOP(i, num) {
    keep_index[threadIdx.x] = -1;
    __syncthreads();

    int k = i * 4;
    T xmin = bboxes[k];
    T ymin = bboxes[k + 1];
    T xmax = bboxes[k + 2];
    T ymax = bboxes[k + 3];
182 183 184 185 186 187 188 189 190 191 192
    T offset = pixel_offset ? static_cast<T>(1.0) : 0;
    T w = xmax - xmin + offset;
    T h = ymax - ymin + offset;
    if (pixel_offset) {
      T cx = xmin + w / 2.;
      T cy = ymin + h / 2.;

      if (is_scale) {
        w = (xmax - xmin) / im_info[2] + 1.;
        h = (ymax - ymin) / im_info[2] + 1.;
      }
193

194 195 196 197 198 199 200
      if (w >= min_size && h >= min_size && cx <= im_w && cy <= im_h) {
        keep_index[threadIdx.x] = i;
      }
    } else {
      if (w >= min_size && h >= min_size) {
        keep_index[threadIdx.x] = i;
      }
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    }
    __syncthreads();
    if (threadIdx.x == 0) {
      int size = (num - i) < BlockSize ? num - i : BlockSize;
      for (int j = 0; j < size; ++j) {
        if (keep_index[j] > -1) {
          keep[cnt++] = keep_index[j];
        }
      }
    }
    __syncthreads();
  }
  if (threadIdx.x == 0) {
    keep_num[0] = cnt;
  }
}

218 219 220
static __device__ float IoU(const float *a, const float *b,
                            const bool pixel_offset = true) {
  float offset = pixel_offset ? static_cast<float>(1.0) : 0;
221 222
  float left = max(a[0], b[0]), right = min(a[2], b[2]);
  float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
223 224
  float width = max(right - left + offset, 0.f),
        height = max(bottom - top + offset, 0.f);
225
  float inter_s = width * height;
226 227
  float s_a = (a[2] - a[0] + offset) * (a[3] - a[1] + offset);
  float s_b = (b[2] - b[0] + offset) * (b[3] - b[1] + offset);
228 229 230 231 232
  return inter_s / (s_a + s_b - inter_s);
}

static __global__ void NMSKernel(const int n_boxes,
                                 const float nms_overlap_thresh,
233 234
                                 const float *dev_boxes, uint64_t *dev_mask,
                                 bool pixel_offset = true) {
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

  const int row_size =
      min(n_boxes - row_start * kThreadsPerBlock, kThreadsPerBlock);
  const int col_size =
      min(n_boxes - col_start * kThreadsPerBlock, kThreadsPerBlock);

  __shared__ float block_boxes[kThreadsPerBlock * 4];
  if (threadIdx.x < col_size) {
    block_boxes[threadIdx.x * 4 + 0] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 0];
    block_boxes[threadIdx.x * 4 + 1] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 1];
    block_boxes[threadIdx.x * 4 + 2] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 2];
    block_boxes[threadIdx.x * 4 + 3] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 3];
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = kThreadsPerBlock * row_start + threadIdx.x;
    const float *cur_box = dev_boxes + cur_box_idx * 4;
    int i = 0;
    uint64_t t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
266 267
      if (IoU(cur_box, block_boxes + i * 4, pixel_offset) >
          nms_overlap_thresh) {
268 269 270 271 272 273 274 275 276 277 278
        t |= 1ULL << i;
      }
    }
    const int col_blocks = DIVUP(n_boxes, kThreadsPerBlock);
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

template <typename T>
static void NMS(const platform::CUDADeviceContext &ctx, const Tensor &proposals,
                const Tensor &sorted_indices, const T nms_threshold,
279
                Tensor *keep_out, bool pixel_offset = true) {
280 281 282 283 284 285 286 287 288 289 290
  int boxes_num = proposals.dims()[0];
  const int col_blocks = DIVUP(boxes_num, kThreadsPerBlock);
  dim3 blocks(DIVUP(boxes_num, kThreadsPerBlock),
              DIVUP(boxes_num, kThreadsPerBlock));
  dim3 threads(kThreadsPerBlock);

  const T *boxes = proposals.data<T>();
  auto place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
  framework::Vector<uint64_t> mask(boxes_num * col_blocks);
  NMSKernel<<<blocks, threads>>>(boxes_num, nms_threshold, boxes,
                                 mask.CUDAMutableData(BOOST_GET_CONST(
291 292
                                     platform::CUDAPlace, ctx.GetPlace())),
                                 pixel_offset);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

  std::vector<uint64_t> remv(col_blocks);
  memset(&remv[0], 0, sizeof(uint64_t) * col_blocks);

  std::vector<int> keep_vec;
  int num_to_keep = 0;
  for (int i = 0; i < boxes_num; i++) {
    int nblock = i / kThreadsPerBlock;
    int inblock = i % kThreadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      ++num_to_keep;
      keep_vec.push_back(i);
      uint64_t *p = &mask[0] + i * col_blocks;
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }
  int *keep = keep_out->mutable_data<int>({num_to_keep}, ctx.GetPlace());
  memory::Copy(place, keep, platform::CPUPlace(), keep_vec.data(),
               sizeof(int) * num_to_keep, ctx.stream());
  ctx.Wait();
}

}  // namespace operators
}  // namespace paddle