elementwise_mlu.h 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_MLU
#include <vector>
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

inline void GetReduceAxes(const int axis, const framework::DDim& src_ddims,
                          const framework::DDim& target_ddims,
                          std::vector<int>* axes) {
  int64_t src_dim_size = src_ddims.size();
  int64_t target_dim_size = target_ddims.size();
  for (int64_t i = 0; i < src_dim_size; ++i) {
    if (i < axis || i >= target_dim_size + axis) {
      axes->push_back(i);
      continue;
    }
    if (src_ddims[i] > target_ddims[i - axis]) {
      axes->push_back(i);
    }
  }
}

inline void GetReduceAxesAndDstDims(const int axis,
                                    const framework::DDim& src_ddims,
                                    const framework::DDim& target_ddims,
                                    std::vector<int>* reduce_axes,
                                    std::vector<int>* dst_dims_vec) {
  int64_t src_dim_size = src_ddims.size();
  int64_t target_dim_size = target_ddims.size();

  int src_axis = (target_dim_size < src_dim_size ? axis : 0);
  for (int ax = 0; ax < src_dim_size; ++ax) {
    if ((ax < src_axis || ax >= src_axis + target_dim_size) ||
        (src_ddims[ax] > 1 && target_ddims[ax - src_axis] == 1)) {
      reduce_axes->push_back(ax);
    } else {
      dst_dims_vec->push_back(src_ddims[ax]);
    }
  }
  if (dst_dims_vec->size() == 0) {
    // target_var is scalar
    dst_dims_vec->push_back(1);
  }
}

template <typename T>
void MLUOpTensorKernel(const framework::ExecutionContext& ctx,
                       const cnnlOpTensorDesc_t op_tensor_op) {
  PADDLE_ENFORCE_EQ(
      platform::is_mlu_place(ctx.GetPlace()), true,
      platform::errors::Unavailable("This kernel only runs on MLU."));
  PADDLE_ENFORCE_EQ((op_tensor_op == CNNL_OP_TENSOR_ADD) ||
                        (op_tensor_op == CNNL_OP_TENSOR_SUB) ||
                        (op_tensor_op == CNNL_OP_TENSOR_MUL),
                    true,
                    platform::errors::Unavailable(
                        "This kernel of MLU only support ADD, SUB, MUL."));

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  out->mutable_data<T>(ctx.GetPlace());

  int axis = ctx.Attr<int>("axis");
  const auto& x_dims = x->dims();
  const auto& y_dims = y->dims();
  axis =
      (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1) : axis);
  int max_dim = std::max(x_dims.size(), y_dims.size());
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*out);
  MLUCnnlOpTensorDesc op_tensor_desc(op_tensor_op, ToCnnlDataType<T>(),
                                     CNNL_NOT_PROPAGATE_NAN);

  MLUCnnl::OpTensor(ctx, op_tensor_desc.get(), x_desc.get(), GetBasePtr(x),
                    y_desc.get(), GetBasePtr(y), out_desc.get(),
                    GetBasePtr(out), ToCnnlDataType<T>());
}

// ------------------ BinaryOp -----------------
enum BINARY_FUNCTOR {
  DIV,
  DIVNONAN,
111
  MAXIMUM,
Q
qipengh 已提交
112
  MINIMUM,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

template <BINARY_FUNCTOR func>
void MLUBinary(const framework::ExecutionContext& ctx,
               cnnlComputationPreference_t prefer,
               const cnnlTensorDescriptor_t x_desc, const void* x,
               const cnnlTensorDescriptor_t y_desc, const void* y,
               const cnnlTensorDescriptor_t out_desc, void* out);

template <>
inline void MLUBinary<DIV>(const framework::ExecutionContext& ctx,
                           cnnlComputationPreference_t prefer,
                           const cnnlTensorDescriptor_t x_desc, const void* x,
                           const cnnlTensorDescriptor_t y_desc, const void* y,
                           const cnnlTensorDescriptor_t out_desc, void* out) {
  MLUCnnl::Div(ctx, prefer, x_desc, x, y_desc, y, out_desc, out);
}

131 132 133 134 135 136 137 138 139 140
template <>
inline void MLUBinary<MAXIMUM>(
    const framework::ExecutionContext& ctx,
    cnnlComputationPreference_t prefer,  // useless, only for compatible
    const cnnlTensorDescriptor_t x_desc, const void* x,
    const cnnlTensorDescriptor_t y_desc, const void* y,
    const cnnlTensorDescriptor_t out_desc, void* out) {
  MLUCnnl::Maximum(ctx, x_desc, x, y_desc, y, out_desc, out);
}

Q
qipengh 已提交
141 142 143 144 145 146 147 148 149
template <>
inline void MLUBinary<MINIMUM>(
    const framework::ExecutionContext& ctx, cnnlComputationPreference_t prefer,
    const cnnlTensorDescriptor_t in1_desc, const void* in1,
    const cnnlTensorDescriptor_t in2_desc, const void* in2,
    const cnnlTensorDescriptor_t out_desc, void* out) {
  MLUCnnl::Minimum(ctx, in1_desc, in1, in2_desc, in2, out_desc, out);
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
template <BINARY_FUNCTOR Functor, typename T>
void MLUBinaryOp(const framework::ExecutionContext& ctx) {
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  out->mutable_data<T>(ctx.GetPlace());

  int axis = ctx.Attr<int>("axis");
  const auto& x_dims = x->dims();
  const auto& y_dims = y->dims();
  axis =
      (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1) : axis);
  int max_dim = std::max(x_dims.size(), y_dims.size());
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  cnnlComputationPreference_t prefer_type = CNNL_COMPUTATION_HIGH_PRECISION;
  MLUBinary<Functor>(ctx, prefer_type, x_desc.get(), GetBasePtr(x),
                     y_desc.get(), GetBasePtr(y), out_desc.get(),
                     GetBasePtr(out));
}

// ------------------ UnaryOp -----------------
enum UNARY_FUNCTOR {
  NEG,
  RECIPROCAL,
};

template <UNARY_FUNCTOR func>
void MLUUnary(const framework::ExecutionContext& ctx,
              cnnlComputationPreference_t prefer,
              const cnnlTensorDescriptor_t input_desc, const void* input,
190
              const cnnlTensorDescriptor_t output_desc, void* output);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

template <>
inline void MLUUnary<NEG>(const framework::ExecutionContext& ctx,
                          cnnlComputationPreference_t prefer,
                          const cnnlTensorDescriptor_t input_desc,
                          const void* input,
                          const cnnlTensorDescriptor_t output_desc,
                          void* output) {
  MLUCnnl::Neg(ctx, input_desc, input, output_desc, output);
}

template <>
inline void MLUUnary<RECIPROCAL>(const framework::ExecutionContext& ctx,
                                 cnnlComputationPreference_t prefer,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  MLUCnnl::Reciprocal(ctx, input_desc, input, output_desc, output);
}

template <UNARY_FUNCTOR Functor, typename Tin, typename Tout = Tin>
void MLUUnaryOp(const framework::ExecutionContext& ctx) {
  auto* x = ctx.Input<Tensor>("X");
  auto* out = ctx.Output<Tensor>("Out");

  out->mutable_data<Tout>(ctx.GetPlace());

  MLUCnnlTensorDesc x_desc(x, CNNL_LAYOUT_ARRAY, ToCnnlDataType<Tin>());
  MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<Tout>());

  cnnlComputationPreference_t prefer_type = CNNL_COMPUTATION_HIGH_PRECISION;
  MLUUnary<Functor>(ctx, prefer_type, x_desc.get(), GetBasePtr(x),
                    out_desc.get(), GetBasePtr(out));
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
// ------------------ MLUElementwiseGradOp -----------------
enum MINMAX_GRAD_FUNCTOR {
  MAXIMUM_GRAD,
  MINIMUM_GRAD,
};
template <MINMAX_GRAD_FUNCTOR Functor, typename Tin, typename Tout = Tin>
void MLUMinMaxGradHelper(const framework::ExecutionContext& ctx) {
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  int axis = ctx.Attr<int>("axis");

  const auto& x_dims = x->dims();
  const auto& y_dims = y->dims();
  axis =
      (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1) : axis);
  int max_dim = std::max(x_dims.size(), y_dims.size());
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  // mask = Logic(x, y) only support min & max
  cnnlLogicOp_t logic =
      Functor == MAXIMUM_GRAD ? CNNL_LOGIC_OP_GE : CNNL_LOGIC_OP_LE;
  Tensor mask(x->dtype());
  mask.Resize(phi::make_ddim(out_dims_array));
  mask.mutable_data<Tin>(ctx.GetPlace());

  cnnlDataType_t data_type = ToCnnlDataType<Tin>();
  MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), data_type);
  MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), data_type);
  MLUCnnlTensorDesc mask_desc(max_dim, out_dims_array.data(), data_type);
  MLUCnnl::Logic(ctx, logic, x_desc.get(), GetBasePtr(x), y_desc.get(),
                 GetBasePtr(y), mask_desc.get(), GetBasePtr(&mask));

  // dx = Mul(dz, mask)
  Tensor dx_temp(x->dtype());
  dx_temp.Resize(dout->dims());
  dx_temp.mutable_data<Tout>(ctx.GetPlace());
  MLUCnnlTensorDesc dout_desc(*dout);
  MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, data_type,
                                  CNNL_NOT_PROPAGATE_NAN);
  MLUCnnl::OpTensor(ctx, mul_op_desc.get(), dout_desc.get(), GetBasePtr(dout),
                    dout_desc.get(), GetBasePtr(&mask), dout_desc.get(),
                    GetBasePtr(&dx_temp), data_type);

  // dy = Sub(dz, dx)
  Tensor dy_temp(y->dtype());
  dy_temp.Resize(dout->dims());
  dy_temp.mutable_data<Tout>(ctx.GetPlace());
  MLUCnnlOpTensorDesc sub_op_desc(CNNL_OP_TENSOR_SUB, data_type,
                                  CNNL_NOT_PROPAGATE_NAN);
  MLUCnnl::OpTensor(ctx, sub_op_desc.get(), dout_desc.get(), GetBasePtr(dout),
                    dout_desc.get(), GetBasePtr(&dx_temp), dout_desc.get(),
                    GetBasePtr(&dy_temp), data_type);

  if (dx) {
    if (dx->dims() != dout->dims()) {
      dx->mutable_data<Tout>(ctx.GetPlace());
      std::vector<int> reduce_axes;
      GetReduceAxes(axis, dx_temp.dims(), dx->dims(), &reduce_axes);
      MLUCnnlReduceDesc reduction_desc(
          reduce_axes, CNNL_REDUCE_ADD, data_type, CNNL_NOT_PROPAGATE_NAN,
          CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES);
      MLUCnnlTensorDesc dx_desc(*dx);
      MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduction_desc.get(),
                      nullptr, dout_desc.get(), GetBasePtr(&dx_temp), 0,
                      nullptr, nullptr, dx_desc.get(), GetBasePtr(dx));
    } else {
      dx->ShareDataWith(dx_temp);
    }
  }

  if (dy) {
    if (dy->dims() != dout->dims()) {
      dy->mutable_data<Tout>(ctx.GetPlace());
      std::vector<int> reduce_axes;
      GetReduceAxes(axis, dy_temp.dims(), dy->dims(), &reduce_axes);
      MLUCnnlReduceDesc reduction_desc(
          reduce_axes, CNNL_REDUCE_ADD, data_type, CNNL_NOT_PROPAGATE_NAN,
          CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES);
      MLUCnnlTensorDesc dy_desc(*dy);
      MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduction_desc.get(),
                      nullptr, dout_desc.get(), GetBasePtr(&dy_temp), 0,
                      nullptr, nullptr, dy_desc.get(), GetBasePtr(dy));
    } else {
      dy->ShareDataWith(dy_temp);
    }
  }
}

323 324 325
}  // namespace operators
}  // namespace paddle
#endif