elementwise_mlu.h 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_MLU
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

inline void GetReduceAxes(const int axis, const framework::DDim& src_ddims,
                          const framework::DDim& target_ddims,
                          std::vector<int>* axes) {
  int64_t src_dim_size = src_ddims.size();
  int64_t target_dim_size = target_ddims.size();
  for (int64_t i = 0; i < src_dim_size; ++i) {
    if (i < axis || i >= target_dim_size + axis) {
      axes->push_back(i);
      continue;
    }
    if (src_ddims[i] > target_ddims[i - axis]) {
      axes->push_back(i);
    }
  }
}

inline void GetReduceAxesAndDstDims(const int axis,
                                    const framework::DDim& src_ddims,
                                    const framework::DDim& target_ddims,
                                    std::vector<int>* reduce_axes,
                                    std::vector<int>* dst_dims_vec) {
  int64_t src_dim_size = src_ddims.size();
  int64_t target_dim_size = target_ddims.size();

  int src_axis = (target_dim_size < src_dim_size ? axis : 0);
  for (int ax = 0; ax < src_dim_size; ++ax) {
    if ((ax < src_axis || ax >= src_axis + target_dim_size) ||
        (src_ddims[ax] > 1 && target_ddims[ax - src_axis] == 1)) {
      reduce_axes->push_back(ax);
    } else {
      dst_dims_vec->push_back(src_ddims[ax]);
    }
  }
  if (dst_dims_vec->size() == 0) {
    // target_var is scalar
    dst_dims_vec->push_back(1);
  }
}

template <typename T>
void MLUOpTensorKernel(const framework::ExecutionContext& ctx,
                       const cnnlOpTensorDesc_t op_tensor_op) {
  PADDLE_ENFORCE_EQ(
      platform::is_mlu_place(ctx.GetPlace()), true,
      platform::errors::Unavailable("This kernel only runs on MLU."));
  PADDLE_ENFORCE_EQ((op_tensor_op == CNNL_OP_TENSOR_ADD) ||
                        (op_tensor_op == CNNL_OP_TENSOR_SUB) ||
                        (op_tensor_op == CNNL_OP_TENSOR_MUL),
                    true,
                    platform::errors::Unavailable(
                        "This kernel of MLU only support ADD, SUB, MUL."));

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  out->mutable_data<T>(ctx.GetPlace());

  int axis = ctx.Attr<int>("axis");
  const auto& x_dims = x->dims();
  const auto& y_dims = y->dims();
  axis =
      (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1) : axis);
  int max_dim = std::max(x_dims.size(), y_dims.size());
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*out);
  MLUCnnlOpTensorDesc op_tensor_desc(op_tensor_op, ToCnnlDataType<T>(),
                                     CNNL_NOT_PROPAGATE_NAN);

  MLUCnnl::OpTensor(ctx, op_tensor_desc.get(), x_desc.get(), GetBasePtr(x),
                    y_desc.get(), GetBasePtr(y), out_desc.get(),
                    GetBasePtr(out), ToCnnlDataType<T>());
}

// ------------------ BinaryOp -----------------
enum BINARY_FUNCTOR {
  DIV,
  DIVNONAN,
};

template <BINARY_FUNCTOR func>
void MLUBinary(const framework::ExecutionContext& ctx,
               cnnlComputationPreference_t prefer,
               const cnnlTensorDescriptor_t x_desc, const void* x,
               const cnnlTensorDescriptor_t y_desc, const void* y,
               const cnnlTensorDescriptor_t out_desc, void* out);

template <>
inline void MLUBinary<DIV>(const framework::ExecutionContext& ctx,
                           cnnlComputationPreference_t prefer,
                           const cnnlTensorDescriptor_t x_desc, const void* x,
                           const cnnlTensorDescriptor_t y_desc, const void* y,
                           const cnnlTensorDescriptor_t out_desc, void* out) {
  MLUCnnl::Div(ctx, prefer, x_desc, x, y_desc, y, out_desc, out);
}

template <BINARY_FUNCTOR Functor, typename T>
void MLUBinaryOp(const framework::ExecutionContext& ctx) {
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  out->mutable_data<T>(ctx.GetPlace());

  int axis = ctx.Attr<int>("axis");
  const auto& x_dims = x->dims();
  const auto& y_dims = y->dims();
  axis =
      (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1) : axis);
  int max_dim = std::max(x_dims.size(), y_dims.size());
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  cnnlComputationPreference_t prefer_type = CNNL_COMPUTATION_HIGH_PRECISION;
  MLUBinary<Functor>(ctx, prefer_type, x_desc.get(), GetBasePtr(x),
                     y_desc.get(), GetBasePtr(y), out_desc.get(),
                     GetBasePtr(out));
}

// ------------------ UnaryOp -----------------
enum UNARY_FUNCTOR {
  NEG,
  RECIPROCAL,
};

template <UNARY_FUNCTOR func>
void MLUUnary(const framework::ExecutionContext& ctx,
              cnnlComputationPreference_t prefer,
              const cnnlTensorDescriptor_t input_desc, const void* input,
168
              const cnnlTensorDescriptor_t output_desc, void* output);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

template <>
inline void MLUUnary<NEG>(const framework::ExecutionContext& ctx,
                          cnnlComputationPreference_t prefer,
                          const cnnlTensorDescriptor_t input_desc,
                          const void* input,
                          const cnnlTensorDescriptor_t output_desc,
                          void* output) {
  MLUCnnl::Neg(ctx, input_desc, input, output_desc, output);
}

template <>
inline void MLUUnary<RECIPROCAL>(const framework::ExecutionContext& ctx,
                                 cnnlComputationPreference_t prefer,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  MLUCnnl::Reciprocal(ctx, input_desc, input, output_desc, output);
}

template <UNARY_FUNCTOR Functor, typename Tin, typename Tout = Tin>
void MLUUnaryOp(const framework::ExecutionContext& ctx) {
  auto* x = ctx.Input<Tensor>("X");
  auto* out = ctx.Output<Tensor>("Out");

  out->mutable_data<Tout>(ctx.GetPlace());

  MLUCnnlTensorDesc x_desc(x, CNNL_LAYOUT_ARRAY, ToCnnlDataType<Tin>());
  MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<Tout>());

  cnnlComputationPreference_t prefer_type = CNNL_COMPUTATION_HIGH_PRECISION;
  MLUUnary<Functor>(ctx, prefer_type, x_desc.get(), GetBasePtr(x),
                    out_desc.get(), GetBasePtr(out));
}

}  // namespace operators
}  // namespace paddle
#endif