framework.py 65.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18
import six
19

Y
Yu Yang 已提交
20
import numpy as np
Q
qiaolongfei 已提交
21

M
minqiyang 已提交
22
from . import compat as cpt
23
from .proto import framework_pb2
24 25
try:
    from . import core
26
except ImportError as e:
27 28 29 30
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
31
    directory. The original error is: \n""" + cpt.get_exception_message(e))
32
except Exception as e:
33
    raise e
34
from . import unique_name
Y
Yu Yang 已提交
35

36
__all__ = [
37 38
    'Program',
    'Operator',
F
fengjiayi 已提交
39
    'Parameter',
40 41 42
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
43
    'get_var',
44
]
Y
Yu Yang 已提交
45

Q
qiaolongfei 已提交
46 47 48 49 50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
54 55
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
56 57 58
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
59

60
def convert_np_dtype_to_dtype_(np_dtype):
61 62
    """
    Convert the data type in numpy to the data type in Paddle
63

64
    Args:
65
        np_dtype(np.dtype): the data type in numpy.
66

67 68
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
69 70

    """
71 72
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
73
        return core.VarDesc.VarType.FP32
74
    elif dtype == np.float64:
75
        return core.VarDesc.VarType.FP64
76
    elif dtype == np.float16:
77
        return core.VarDesc.VarType.FP16
78
    elif dtype == np.int32:
79
        return core.VarDesc.VarType.INT32
80
    elif dtype == np.int16:
81
        return core.VarDesc.VarType.INT16
82
    elif dtype == np.int64:
83
        return core.VarDesc.VarType.INT64
84
    elif dtype == np.bool:
85
        return core.VarDesc.VarType.BOOL
86 87
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
88 89
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
90
    else:
M
minqiyang 已提交
91
        raise ValueError("Not supported numpy dtype %s" % dtype)
92 93 94


def dtype_is_floating(dtype):
95 96 97
    """
    Check the data type is floating or not.
    Args:
98
        dtype(np.dtype|core.VarDesc.VarType): data type.
99 100 101 102 103
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
104
    if not isinstance(dtype, core.VarDesc.VarType):
105 106
        dtype = convert_np_dtype_to_dtype_(dtype)

107 108 109 110
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
111 112


Y
Yang Yang(Tony) 已提交
113
def _debug_string_(proto, throw_on_error=True):
114 115 116 117 118 119 120 121 122 123 124
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
125
    error_fields = list()
Y
Yang Yang(Tony) 已提交
126
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
127 128
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
129 130 131
    return proto.__str__()


Y
Yu Yang 已提交
132
class Variable(object):
133
    """
134 135 136
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
137
    two variables in different blocks could have the same name.
138

139 140
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
141

142
    Most of a Variable's member variables can be setted to be None. It mean
143
    it is not available or will be specified later.
144 145

    Args:
146
        block(Block): The block that the variable belongs to.
147 148
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
149 150
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
151
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
152
            Some kinds of variable do not contain shape, just set it to None.
153 154 155
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
156
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
157
            series data.
158
            Default: None
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
181 182
    """

Y
Yu Yang 已提交
183 184
    def __init__(self,
                 block,
Y
Yu Yang 已提交
185
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
186 187 188 189
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
190
                 capacity=None,
Q
QI JUN 已提交
191
                 persistable=None,
F
fengjiayi 已提交
192
                 error_clip=None,
Y
Yu Yang 已提交
193
                 stop_gradient=False,
F
fengjiayi 已提交
194
                 is_data=False,
Y
Yu Yang 已提交
195
                 **kwargs):
Y
Yu Yang 已提交
196
        self.block = block
F
fengjiayi 已提交
197
        self.error_clip = error_clip
Y
Yu Yang 已提交
198 199

        if name is None:
Y
Yu Yang 已提交
200
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
201
        is_new_var = False
M
minqiyang 已提交
202 203
        name = cpt.to_literal_str(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
204 205

        if self.desc is None:
M
minqiyang 已提交
206
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
207
            is_new_var = True
Y
Yu Yang 已提交
208

Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
217
        if shape is not None:
Y
Yu Yang 已提交
218
            if is_new_var:
219
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
220 221 222 223 224 225 226 227
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
228
        if dtype is not None:
229
            if not isinstance(dtype, core.VarDesc.VarType):
230
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
231
            if is_new_var:
F
fengjiayi 已提交
232
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
233
            else:
F
fengjiayi 已提交
234
                old_dtype = self.dtype
Q
QI JUN 已提交
235
                if dtype != old_dtype:
Y
Yu Yang 已提交
236 237 238 239 240
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
241 242

        if lod_level is not None:
Y
Yu Yang 已提交
243
            if is_new_var:
244
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
245 246 247 248 249 250 251
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
252 253 254 255 256 257 258 259 260 261 262
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

263 264 265 266 267 268 269 270
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
271
        self.block.vars[name] = self
Y
Yu Yang 已提交
272
        self.op = None
Y
Yu Yang 已提交
273
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
274
        self.is_data = is_data
Y
Yu Yang 已提交
275

276
    def __str__(self):
Y
Yang Yang(Tony) 已提交
277 278
        return self.to_string(True)

F
update  
fengjiayi 已提交
279
    def to_string(self, throw_on_error, with_details=False):
280 281 282 283
        """
        Get debug string.

        Args:
284 285
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
286
            with_details(bool): more details about variables and parameters
287 288
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
289

290 291
        Returns:
            str: The debug string.
292
        """
F
update  
fengjiayi 已提交
293 294
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
295
        protostr = self.desc.serialize_to_string()
296
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
297 298 299 300
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
301 302
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
303
        return res_str
304 305 306

    __repr__ = __str__

W
Wu Yi 已提交
307
    def _set_desc(self, input):
308 309 310 311 312 313 314 315 316
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
317 318
        self.desc = input

319 320 321 322
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
323 324 325 326
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
327 328
    @property
    def name(self):
M
minqiyang 已提交
329
        return cpt.to_literal_str(self.desc.name())
Y
Yu Yang 已提交
330

T
typhoonzero 已提交
331 332 333 334
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
335 336 337
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
338
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
339 340

    @property
F
fengjiayi 已提交
341 342
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
343 344 345

    @property
    def lod_level(self):
346
        return self.desc.lod_level()
Y
Yu Yang 已提交
347

Y
Yu Yang 已提交
348 349 350 351
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
352
    def _set_error_clip(self, error_clip):
353 354 355 356 357 358 359 360 361
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
362 363
        self.error_clip = error_clip

Y
Yu Yang 已提交
364

F
fengjiayi 已提交
365 366 367
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
368

369 370
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
371 372 373 374
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
375
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
376 377 378 379 380
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
381 382 383 384
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
385 386 387 388 389 390 391 392 393
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
394
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
395 396 397 398 399 400
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
401 402 403 404 405 406 407 408
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
409 410
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
411 412
        return self.op_proto_map[type]

413 414 415 416 417 418 419
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
420

Y
Yu Yang 已提交
421
class Operator(object):
422
    """
423 424 425 426 427 428 429
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
430
        type(str): The type of operator. Default None.
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
451
        Block.append_op or Block._prepend_op instead.
452 453 454 455 456 457 458 459 460 461

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
462
    """
463 464 465 466 467
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
468
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
469
    }
470

Y
Yu Yang 已提交
471 472
    def __init__(self,
                 block,
Y
Yu Yang 已提交
473
                 desc,
Y
Yu Yang 已提交
474 475 476 477 478
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
479
        self.desc = desc
T
typhoonzero 已提交
480
        self.attrs = attrs
Y
yuyang18 已提交
481 482 483 484 485 486 487 488
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
489 490 491 492 493 494 495 496

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
497

F
fengjiayi 已提交
498 499 500 501 502
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
503
        self.desc.set_type(type)
F
fengjiayi 已提交
504
        proto = OpProtoHolder.instance().get_op_proto(type)
505

Y
Yang Yang(Tony) 已提交
506 507
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
508
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
509 510
                    return True
            return False
Q
QI JUN 已提交
511

Y
Yang Yang(Tony) 已提交
512 513 514 515 516 517 518
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
519 520 521 522
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
523 524
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
525 526 527
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
528
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
529
                            in_arg_names.append(arg)
530 531
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
532
                        else:
M
minqiyang 已提交
533
                            in_arg_names.append(cpt.to_literal_str(arg.name))
534
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
535 536
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
537

Y
Yu Yang 已提交
538
        if outputs is not None:
539 540 541 542 543 544 545
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
546 547
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
548 549 550
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
551

F
fengjiayi 已提交
552
            for out_proto in proto.outputs:
553 554 555 556
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
557 558
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
559 560 561
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
562
                    out_arg_names.append(cpt.to_literal_str(arg.name))
563 564
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
565

Y
yuyang18 已提交
566 567
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
568
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
569
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
570
                attr_name = attr.name
Y
yuyang18 已提交
571 572
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
573
                    continue
Y
Yancey1989 已提交
574
                attr_val = self.attrs[attr_name]
G
gongweibao 已提交
575 576
                self._update_desc_attr(attr_name, attr_val)

M
minqiyang 已提交
577 578 579
        import sys
        print('self.attrs', self.attrs)
        sys.stdout.flush()
580
        self.desc.check_attrs()
581
        if self.has_kernel(type):
Q
QI JUN 已提交
582
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
583
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
584

585 586 587
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
588
    def to_string(self, throw_on_error):
589
        """
590 591
        Get debug string.

592
        Args:
593 594
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
595

596 597
        Returns:
            str: The debug string.
598 599

        """
600
        protostr = self.desc.serialize_to_string()
601
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
602 603 604 605
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
606 607 608

    __repr__ = __str__

F
fengjiayi 已提交
609 610 611 612 613
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
614
        """
615
        Get the input arguments according to the input parameter name.
616

617 618
        Args:
            name(str): The input parameter name.
619

620 621 622
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
623
        """
F
fengjiayi 已提交
624 625
        return self.desc.input(name)

T
typhoonzero 已提交
626
    def rename_input(self, old_name, new_name):
627 628 629 630 631 632 633 634 635 636
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
637 638 639
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
640 641 642 643 644 645 646 647 648 649
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
650 651
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
652 653 654 655
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
656 657 658 659 660 661 662 663
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
664
    def output(self, name):
665
        """
666
        Get output arguments by the output parameter name.
667

668 669
        Args:
            name(str): The output parameter name.
670

671 672 673
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
674
        """
F
fengjiayi 已提交
675 676 677 678 679 680
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

681 682 683 684 685 686 687 688
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
689
    def has_attr(self, name):
690
        """
691 692
        Whether this Operator has the attribute with name or not.

693
        Args:
694
            name(str): the attribute name.
695

696 697
        Returns:
            bool: True if has this attribute.
698 699

        """
F
fengjiayi 已提交
700 701 702
        return self.desc.has_attr(name)

    def attr_type(self, name):
703
        """
704
        Get the type of attribute by attribute's name.
705

706 707
        Args:
            name(str): the attribute name.
708

709 710
        Returns:
            core.AttrType: the attribute type.
711
        """
F
fengjiayi 已提交
712 713
        return self.desc.attr_type(name)

Y
yuyang18 已提交
714
    def set_attr(self, name, val):
715 716 717 718 719 720 721 722 723 724
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
725
        self.attrs[name] = val
G
gongweibao 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
739 740
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
741 742
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
743
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
744 745 746 747 748
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
749

F
fengjiayi 已提交
750 751 752 753 754
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
755
        """
756 757
        Get the attribute by name.

758
        Args:
759
            name(str): the attribute name.
760

761 762
        Returns:
            bool|int|str|float|list: The attribute value. The return value
763 764
            can be any valid attribute type.
        """
F
fengjiayi 已提交
765
        return self.desc.attr(name)
Y
Yu Yang 已提交
766

F
fengjiayi 已提交
767
    def block_attr(self, name):
768
        """
769
        Get the block attribute by name.
770

771 772
        Args:
            name(str): the attribute name.
773

774 775
        Returns:
            int: the block index.
776
        """
F
fengjiayi 已提交
777
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
778

J
JiayiFeng 已提交
779
    def all_attrs(self):
F
fengjiayi 已提交
780
        """
781 782 783 784
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
785 786 787 788 789 790 791 792 793 794
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
795

Y
Yu Yang 已提交
796
class Block(object):
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
826
    def __init__(self, program, idx):
Y
Yu Yang 已提交
827
        self.desc = program.desc.block(idx)
828
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
829
        self.ops = list()  # operator list
Y
Yu Yang 已提交
830
        self.program = program
831
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
832

833
    def __str__(self):
Y
Yang Yang(Tony) 已提交
834 835
        return self.to_string(True)

F
fengjiayi 已提交
836 837
    def to_string(self, throw_on_error, with_details=False):
        """
838 839
        Get debug string.

F
fengjiayi 已提交
840 841
        Args:
            throw_on_error(bool): raise exception when self is not initialized
842
                when throw_on_error is True.
F
update  
fengjiayi 已提交
843
            with_details(bool): more details about variables and parameters
844 845
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
846

847 848
        Returns:
            str: The debug string.
F
fengjiayi 已提交
849 850 851 852
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
853
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
854 855
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
856
            for var in list(self.vars.values()):
F
fengjiayi 已提交
857
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
858
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
859
            for op in self.ops:
F
fengjiayi 已提交
860 861
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
862 863 864
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
865 866
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
867 868
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
869 870 871

    __repr__ = __str__

Y
Yu Yang 已提交
872 873
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
874
        return self.desc.parent
Y
Yu Yang 已提交
875

Y
Yu Yang 已提交
876 877 878 879
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
880
    def _set_forward_block_idx(self, idx):
881 882 883 884 885 886 887 888 889
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
890
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
891

Y
Yu Yang 已提交
892 893
    @property
    def idx(self):
Y
Yu Yang 已提交
894
        return self.desc.id
Y
Yu Yang 已提交
895

Q
Qiao Longfei 已提交
896
    def var(self, name):
897 898 899 900 901 902 903 904 905 906 907 908 909
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
910
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
911 912 913
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
914 915
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
916
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
917
        return v
Q
Qiao Longfei 已提交
918

W
Wu Yi 已提交
919
    def _var_recursive(self, name):
920 921 922 923 924 925 926 927 928 929 930 931 932
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
959

Q
Qiao Longfei 已提交
960
    def all_parameters(self):
961
        return list(self.iter_parameters())
962

963
    def iter_parameters(self):
964
        return (item[1] for item in list(self.vars.items())
965
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
966

Y
Yu Yang 已提交
967
    def create_var(self, *args, **kwargs):
968
        var = Variable(block=self, *args, **kwargs)
969 970
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
971
        return var
Y
Yu Yang 已提交
972

Q
Qiao Longfei 已提交
973 974 975
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
976
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
977 978
        """
        Rename variable in vars and ops' inputs and outputs
979 980 981 982 983 984 985 986 987 988 989 990

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
991
        """
M
minqiyang 已提交
992 993 994
        name = cpt.to_literal_str(name)
        new_name = cpt.to_literal_str(new_name)

T
typhoonzero 已提交
995
        if not self.has_var(name):
996
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
997 998
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
999
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1000 1001 1002 1003 1004 1005 1006
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1007
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1008 1009 1010 1011
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1012
        orig_var_type = v.type
M
minqiyang 已提交
1013
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1014
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1015
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1016
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1017 1018 1019 1020
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1021
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1022 1023 1024 1025 1026 1027 1028
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1029
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1030 1031
            var = Variable(
                self,
T
typhoonzero 已提交
1032
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1033 1034 1035 1036
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1037
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1038 1039 1040
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1041
        self._sync_with_cpp()
1042
        return var
T
typhoonzero 已提交
1043

W
Wu Yi 已提交
1044 1045
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1046
        self.desc._remove_var(cpt.to_bytes(name))
1047 1048
        del self.vars[name]

Y
Yu Yang 已提交
1049 1050
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1051
        param = Parameter(global_block, *args, **kwargs)
1052 1053
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1054
        return param
Y
Yu Yang 已提交
1055

Y
Yu Yang 已提交
1056
    def append_op(self, *args, **kwargs):
1057 1058 1059 1060 1061 1062
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1063
        op_desc = self.desc.append_op()
1064
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1065 1066 1067
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1068
    def _insert_op(self, index, *args, **kwargs):
1069 1070 1071 1072 1073 1074 1075 1076 1077
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1078 1079
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1080 1081 1082 1083
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1084
    def _remove_op(self, index):
1085 1086 1087 1088 1089 1090 1091 1092 1093
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1094 1095
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1096 1097
        del self.ops[index]

W
Wu Yi 已提交
1098
    def _slice_ops(self, start, end):
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1109
        return self.ops[start:end]
Y
Yancey1989 已提交
1110

W
Wu Yi 已提交
1111 1112
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1113
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1114
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1115 1116
        return op

W
Wu Yi 已提交
1117
    def _sync_with_cpp(self):
1118
        """
1119 1120
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1121
        """
Q
Qiao Longfei 已提交
1122 1123 1124 1125 1126
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1127
        # sync variables removed from c++ end
1128
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1129
            if not self.desc.find_var(cpt.to_bytes(var)):
1130 1131
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1132
        # sync operators from cpp
1133 1134 1135 1136
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1153 1154 1155 1156 1157

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1158
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1159 1160 1161 1162 1163 1164 1165

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1179 1180 1181 1182
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1183
    def _copy_param_info_from(self, other):
1184
        """
1185 1186
        Copy the information of parameters from the other block.

1187
        Args:
1188 1189 1190 1191 1192
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1193 1194 1195 1196 1197

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1198 1199
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1200
        for p in other.iter_parameters():
1201 1202 1203
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1204
                raise ValueError("_copy_param_info_from should be invoked with "
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1217
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1218
                error_clip=p.error_clip,
1219 1220 1221
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1222
    def _clone_variable(self, var):
1223 1224
        """
        Clone a variable into current block.
1225

1226 1227 1228 1229
        Args:
            var: the variable to be cloned.

        Returns:
1230
            Variable: the new  variable cloned from 'var' in current block.
1231 1232
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1233 1234 1235 1236 1237
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1238 1239
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1240
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1241 1242 1243 1244 1245 1246
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1247 1248
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1249 1250 1251 1252 1253 1254 1255
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1256 1257
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1258
        return ret_var
1259

Y
Yu Yang 已提交
1260 1261

class Program(object):
D
dzhwinter 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1273
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1274 1275

    Returns:
Y
yuyang18 已提交
1276
        A empty program.
D
dzhwinter 已提交
1277 1278

    Examples:
Y
yuyang18 已提交
1279 1280 1281 1282 1283 1284
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1285 1286 1287

    """

1288 1289
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1290 1291
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1292
        self._seed = 0
Y
yuyang18 已提交
1293
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1294
        self._op_role_var = []
Y
yuyang18 已提交
1295 1296 1297

    @property
    def op_role(self):
Y
yuyang18 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1311 1312 1313 1314 1315 1316 1317 1318
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1319 1320 1321 1322 1323 1324 1325
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1326 1327 1328 1329
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1330
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1331 1332

    @contextlib.contextmanager
1333
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1334 1335 1336 1337 1338 1339 1340
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1341
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1342 1343 1344 1345

        Examples:

            >>> p, g = backward(...)
1346
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1347 1348
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1349 1350
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1351 1352 1353 1354
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1355
        yield
Y
yuyang18 已提交
1356
        self._op_role_var = []
Y
yuyang18 已提交
1357
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1358

1359
    def __str__(self):
Y
yuyang18 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1369 1370
        return self.to_string(True)

F
fengjiayi 已提交
1371 1372 1373
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1374

F
fengjiayi 已提交
1375
        Args:
Y
yuyang18 已提交
1376 1377
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1378

Y
yuyang18 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1399 1400
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1401 1402
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1403

1404
    def get_desc(self):
Y
yuyang18 已提交
1405 1406 1407 1408 1409 1410 1411
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1412 1413
        return self.desc

1414
    def clone(self, for_test=False):
Y
yuyang18 已提交
1415 1416 1417
        """
        Create a new, duplicated program.

1418

Y
yuyang18 已提交
1419 1420 1421 1422
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1423

Y
yuyang18 已提交
1424 1425 1426 1427
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1428 1429 1430 1431 1432
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1433 1434

        Args:
Y
yuyang18 已提交
1435 1436
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1437

D
dzhwinter 已提交
1438
        Returns:
Y
yuyang18 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1492 1493
        """
        if for_test:
1494
            p = self.inference_optimize()
1495
        else:
1496
            p = Program()
1497
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1498 1499 1500
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
W
Wu Yi 已提交
1501
            p._sync_with_cpp()
1502

W
Wu Yi 已提交
1503
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1504
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1505
        return p
1506

1507
    def prune(self, targets):
Y
yuyang18 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1523 1524 1525 1526 1527 1528
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1529 1530
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1531
                    # and we need to find the current op that generate this
1532 1533 1534 1535 1536 1537 1538 1539
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1540
                    t = t.op
1541 1542 1543 1544
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1545
                else:
1546 1547
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1548 1549 1550 1551

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1552 1553 1554
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1555
        res._sync_with_cpp()
1556 1557
        return res

1558
    def inference_optimize(self):
Y
yuyang18 已提交
1559
        """
F
fengjiayi 已提交
1560 1561 1562 1563 1564
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1565
        3. change the :code:`is_test`
Y
yuyang18 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1575 1576
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1577
        res = Program()
1578
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
        while True:
            if read_op_idx >= root_block.op_size() or root_block.op(
                    read_op_idx).type() == 'read':
                break
            read_op_idx += 1
        if read_op_idx < root_block.op_size():
            root_block._remove_op(0, read_op_idx + 1)
        for var in root_block.all_vars():
            if var.type() == core.VarDesc.VarType.READER:
                root_block._remove_var(var.name())

        # change all `is_test` attributes to True
M
minqiyang 已提交
1595
        for i in six.moves.range(res.desc.num_blocks()):
1596
            block = res.desc.block(i)
M
minqiyang 已提交
1597
            for j in six.moves.range(block.op_size()):
1598 1599 1600
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1601 1602 1603
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1604
        res._sync_with_cpp()
1605 1606
        return res

1607 1608
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1609 1610 1611 1612 1613 1614 1615
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1616
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1617 1618 1619 1620

        Returns:
            Program: A deserialized program desc.
        """
1621 1622
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1623
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1624
        p._sync_with_cpp()
1625
        return p
Y
Yu Yang 已提交
1626

D
dzhwinter 已提交
1627 1628
    @property
    def random_seed(self):
Y
yuyang18 已提交
1629 1630 1631 1632 1633 1634
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1635 1636
        return self._seed

Q
qiaolongfei 已提交
1637 1638
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1639 1640 1641
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1642 1643
        return self.desc.num_blocks()

D
dzhwinter 已提交
1644 1645 1646 1647 1648 1649
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1650
    def __repr__(self):
1651
        return self.__str__()
1652

Y
Yu Yang 已提交
1653
    def global_block(self):
Y
yuyang18 已提交
1654 1655 1656
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1657 1658
        return self.blocks[0]

Q
Qiao Longfei 已提交
1659
    def block(self, index):
Y
yuyang18 已提交
1660 1661 1662 1663 1664 1665 1666 1667
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1668 1669
        return self.blocks[index]

Y
Yu Yang 已提交
1670
    def current_block(self):
Y
yuyang18 已提交
1671 1672 1673 1674
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1675 1676
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1677
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1688
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1689 1690 1691
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1692 1693 1694 1695 1696
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1697 1698 1699 1700 1701
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1702 1703
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1704
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1715 1716 1717
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1718
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1719

W
Wu Yi 已提交
1720
    def _copy_param_info_from(self, other):
1721
        """
1722
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1723

Y
yuyang18 已提交
1724 1725 1726
        Notes: This is a very low level API. Users should not invoke it
        directly.

1727 1728 1729 1730 1731 1732 1733
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1734
            raise TypeError("_copy_param_info_from should be invoked with "
1735 1736 1737
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1738
            raise ValueError("_copy_param_info_from should be invoked with two "
1739
                             "program, with represent the same topology")
W
Wu Yi 已提交
1740
        self.global_block()._copy_param_info_from(other.global_block())
1741

F
fengjiayi 已提交
1742 1743 1744
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1745

Y
yuyang18 已提交
1746 1747 1748
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1749 1750 1751 1752 1753 1754 1755
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1756
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1757 1758 1759
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1760
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1761
                             "program, with represent the same topology")
1762
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1763 1764 1765
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1766
    def list_vars(self):
Y
yuyang18 已提交
1767 1768 1769 1770 1771 1772
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1773
        for each_block in self.blocks:
1774
            for each_var in list(each_block.vars.values()):
1775 1776
                yield each_var

Y
Yu Yang 已提交
1777

Y
Yu Yang 已提交
1778
class Parameter(Variable):
1779
    """
1780
    Parameter is derived from Variable. A parameter is a persistable
1781
    Variable, and will be updated by optimizers after each iteration.
1782
    The training of a neural network is essentially the updating of
1783 1784
    its parameters.

1785
    Relative to a general Variable, a Parameter has several its own
1786 1787
    member variables:

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1800 1801
    """

Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1812 1813 1814

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1815 1816 1817 1818
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1819 1820
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1821
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1822

W
wanghaoshuang 已提交
1823
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1824

F
fengjiayi 已提交
1825 1826 1827
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1828 1829 1830
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1831

F
update  
fengjiayi 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1846
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1847
            for attr_name in additional_attr:
1848 1849
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1850 1851
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1852 1853 1854 1855
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1856

Y
Yu Yang 已提交
1857
# program is a global instance.
Y
Yu Yang 已提交
1858 1859
_main_program_ = Program()
_startup_program_ = Program()
1860

1861

1862
def default_startup_program():
Y
Yu Yang 已提交
1863
    """
Y
yuyang18 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1873

Y
Yu Yang 已提交
1874 1875 1876
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1877
    return _startup_program_
1878

1879

1880
def default_main_program():
Y
Yu Yang 已提交
1881
    """
Y
yuyang18 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1891

Y
Yu Yang 已提交
1892 1893 1894
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1895
    return _main_program_
Y
Yu Yang 已提交
1896 1897 1898 1899 1900


def switch_main_program(program):
    """
    Switch the main program to a new program.
1901

Y
Yu Yang 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1916
    Switch the startup program to a new program
Y
Yu Yang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1932 1933 1934
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1935

Y
Yu Yang 已提交
1936
    Examples:
Y
yuyang18 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1947

Y
Yu Yang 已提交
1948
    Examples:
Y
yuyang18 已提交
1949 1950 1951 1952 1953 1954

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1955

Y
Yu Yang 已提交
1956
    Args:
Y
yuyang18 已提交
1957
        main_program(Program): New main program inside `with` statement.
1958
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1972 1973 1974 1975


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1976
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
1977

X
xuwei06 已提交
1978 1979 1980
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
1981
        If None, default_global_program() will be used.
X
xuwei06 已提交
1982 1983 1984 1985 1986 1987 1988

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1989
    assert isinstance(program, Program)
X
xuwei06 已提交
1990 1991

    return program.global_block().var(name)