sequence_expand_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sequence_expand_op.h"
W
wanghaoshuang 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
yangyaming 已提交
20
using framework::LoDTensor;
W
wanghaoshuang 已提交
21

W
wanghaoshuang 已提交
22
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
36 37
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    PADDLE_ENFORCE_EQ(x_dims.size(), 2U,
                      "Dimension number of Input(X) should be 2.");

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

      PADDLE_ENFORCE_LE(x_lod.size(), 1,
                        "Number of lod level of Input(X) should not be "
                        "greater than 1.");

      PADDLE_ENFORCE(x_lod.size() == y_lod.size() || x_lod.size() == 0,
Y
yangyaming 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                     "Level number of Input(X)'s lod should be either equal "
                     "to 0 or equal to that of Input(Y).");

      PADDLE_ENFORCE_GT(y_lod.size(), 0,
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");

      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
70 71

      int64_t out_first_dim = 0;
Y
yangyaming 已提交
72
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
73 74
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
75 76 77 78
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
79
          }
Y
yangyaming 已提交
80 81
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
82 83 84 85 86 87
        }
      }
      ctx->SetOutputDim("Out", {out_first_dim, x_dims[1]});
    } else {
      ctx->SetOutputDim("Out", {-1, x_dims[1]});
    }
W
wanghaoshuang 已提交
88 89 90
  }
};

W
wanghaoshuang 已提交
91
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
92
 public:
93
  SequenceExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaoshuang 已提交
94
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
95
    AddInput("X",
Y
yangyaming 已提交
96 97
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
98
    AddInput("Y",
Y
yangyaming 已提交
99 100
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
101
    AddOutput("Out",
Y
yangyaming 已提交
102 103
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
104
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
105
    AddComment(R"DOC(
W
wanghaoshuang 已提交
106
Sequence Expand Operator.
W
wanghaoshuang 已提交
107

108 109
This operator expands input(X) according to LOD of input(Y).
Following are cases to better explain how this works:
W
wanghaoshuang 已提交
110
Case 1:
W
wanghaoshuang 已提交
111

W
wanghaoshuang 已提交
112
Given a 2-level LoDTensor input(X)
W
wanghaoshuang 已提交
113 114 115 116 117 118 119
    X.lod = [[0,       2, 3],
             [0, 1,    3, 4]]
    X.data = [a, b, c, d]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
120
with condition len(Y.lod[-1]) -1 == X.dims[0]
W
wanghaoshuang 已提交
121 122 123 124 125
then we get 2-level LoDTensor
    Out.lod = [[0,                2,    4],
               [0,       3,       6, 7, 8]]
    Out.data = [a, a, a, b, b, b, c, d]
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
126 127 128

Case 2:

W
wanghaoshuang 已提交
129
Given a common Tensor input(X)
W
wanghaoshuang 已提交
130 131 132 133
    X.data = [a, b, c]
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
134
with condition len(Y.lod[-1]) -1 == X.dims[0]
W
wanghaoshuang 已提交
135 136 137 138
then we get 1-level LoDTensor
    Out.lod = [[0,    2, 3,      6]]
    Out.data = [a, a, b, c, c, c]
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
139 140 141

Case 3:

W
wanghaoshuang 已提交
142
Given a common Tensor input(X)
W
wanghaoshuang 已提交
143 144 145 146
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
147
with condition len(Y.lod[-1]) -1 == X.dims[0]
W
wanghaoshuang 已提交
148
then we get 1-level LoDTensor
W
wanghaoshuang 已提交
149 150 151 152
    Out.lod = [[0,           2,     3,                     6]]
    Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]]
    Out.dims = [6, 2]

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
Case 4:

Given 2-level a LoDTensor input(X)
    X.lod = [[0,       2, 3],
             [0, 1,    3, 4]]
    X.data = [a, b, c, d]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 2-level LoDTensor
    Out.lod = [[0,                2,    4],
               [0,       3,       6, 6, 8]]
    Out.data = [a, a, a, b, b, b, d, d]
    Out.dims = [8, 1]

W
wanghaoshuang 已提交
170 171 172 173 174

)DOC");
  }
};

W
wanghaoshuang 已提交
175
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
176 177 178 179 180
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
181 182
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null.");
W
wanghaoshuang 已提交
183
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
184 185
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
186 187
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
188

W
wanghaoshuang 已提交
189 190 191 192 193 194 195 196 197 198
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wanghaoshuang 已提交
199 200
REGISTER_OP(sequence_expand, ops::SequenceExpandOp, ops::SequenceExpandOpMaker,
            sequence_expand_grad, ops::SequenceExpandOpGrad);
Q
QI JUN 已提交
201
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
202
    sequence_expand,
Y
yangyaming 已提交
203 204 205 206
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
207
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
208
    sequence_expand_grad,
Y
yangyaming 已提交
209 210 211 212
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);