Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
bf3f56e8
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bf3f56e8
编写于
3月 15, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish adaption for backward.
上级
352fa41a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
108 addition
and
82 deletion
+108
-82
paddle/fluid/operators/math/math_function.cc
paddle/fluid/operators/math/math_function.cc
+2
-0
paddle/fluid/operators/math/math_function.cu
paddle/fluid/operators/math/math_function.cu
+2
-0
paddle/fluid/operators/sequence_expand_op.cc
paddle/fluid/operators/sequence_expand_op.cc
+25
-26
paddle/fluid/operators/sequence_expand_op.h
paddle/fluid/operators/sequence_expand_op.h
+79
-56
未找到文件。
paddle/fluid/operators/math/math_function.cc
浏览文件 @
bf3f56e8
...
...
@@ -371,6 +371,8 @@ template struct RowwiseAdd<platform::CPUDeviceContext, double>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
struct
RowwiseSum
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
RowwiseSum
<
platform
::
CPUDeviceContext
,
double
>;
...
...
paddle/fluid/operators/math/math_function.cu
浏览文件 @
bf3f56e8
...
...
@@ -422,6 +422,8 @@ struct RowwiseAdd<platform::CUDADeviceContext, T> {
template
struct
RowwiseAdd
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
RowwiseAdd
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
ColwiseSum
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
ColwiseSum
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
ColwiseSum
<
platform
::
CUDADeviceContext
,
int64_t
>;
// template struct ColwiseSum<platform::CUDADeviceContext, double>;
// The ColwiseSum<platform::CUDADeviceContext, double> failed in debug mode,
// and only failed for this case. So reimplemented it.
...
...
paddle/fluid/operators/sequence_expand_op.cc
浏览文件 @
bf3f56e8
...
...
@@ -33,9 +33,10 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
"Output(Out) of SequenceExpandOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
int
ref_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"ref_level"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2U
,
"Dimension number of Input(X) should be 2."
);
int
ref_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"ref_level"
);
if
(
ctx
->
IsRuntime
())
{
framework
::
Variable
*
x_var
=
...
...
@@ -51,39 +52,37 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
"greater than 1."
);
PADDLE_ENFORCE
(
x_lod
.
size
()
==
y_lod
.
size
()
||
x_lod
.
size
()
==
0
,
"Number of lod level of Input(X) either equal to 0 "
"or equal to that of Input(Y)."
);
"Level number of Input(X)'s lod should be either equal "
"to 0 or equal to that of Input(Y)."
);
PADDLE_ENFORCE_GT
(
y_lod
.
size
(),
0
,
"Level number of Input(Y)'s lod should be "
"greater than 0."
);
PADDLE_ENFORCE
(
ref_level
==
-
1
||
(
ref_level
>=
0
&&
ref_level
<
static_cast
<
int
>
(
y_lod
.
size
())),
"Invlid `ref_level`, which should be either equal to -1 "
"or in [0, %d)"
,
y_lod
.
size
());
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
int64_t
out_first_dim
=
0
;
if
(
y_lod
[
ref_level
].
size
()
<
1
)
{
if
(
y_lod
[
ref_level
].
size
()
<
=
1
)
{
out_first_dim
=
x_dims
[
0
];
}
else
{
if
(
x_lod
.
size
()
==
1
)
{
// X is LoDTensor
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
out_first_dim
+=
(
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
])
*
x_seq_len
;
}
}
else
{
// X is normal Tensor
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
out_first_dim
+=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
x_seq_len
=
1
;
if
(
x_lod
.
size
()
==
1
)
{
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
}
out_first_dim
+=
(
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
])
*
x_seq_len
;
}
}
ctx
->
SetOutputDim
(
"Out"
,
{
out_first_dim
,
x_dims
[
1
]});
}
else
{
framework
::
VarDesc
*
in_reader
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Y"
)[
0
]);
int
lod_level_num
=
in_reader
->
GetLoDLevels
().
size
();
PADDLE_ENFORCE_GE
(
ref_level
,
0
,
"Level of referred lod should be greater or "
"equal to 0."
);
PADDLE_ENFORCE_LT
(
ref_level
,
lod_level_num
,
"Level of referred lod should be smaller than "
"level number of Input(Y)."
);
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
,
x_dims
[
1
]});
}
}
...
...
@@ -102,7 +101,7 @@ class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
"generated from Input(X) by referring lod of Input(Y)."
);
AddAttr
<
int
>
(
"ref_level"
,
"Specify lod level of Input(Y)."
);
AddAttr
<
int
>
(
"ref_level"
,
"Specify lod level of Input(Y)."
)
.
SetDefault
(
-
1
)
;
AddComment
(
R"DOC(
Sequence Expand Operator.
...
...
paddle/fluid/operators/sequence_expand_op.h
浏览文件 @
bf3f56e8
...
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "
unsupported/Eigen/CXX11/Tensor
"
#include "
paddle/fluid/operators/math/math_function.h
"
namespace
paddle
{
namespace
operators
{
...
...
@@ -32,52 +32,53 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
ref_level
=
context
.
Attr
<
int
>
(
"ref_level"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
x_lod
=
x
->
lod
();
auto
&
y_lod
=
y
->
lod
();
PADDLE_ENFORCE_GE
(
ref_level
,
0
,
"Value of attribute `ref_level` should be greater or "
"equal to 0."
);
PADDLE_ENFORCE_GT
(
y_lod
.
size
(),
0
,
"Level number of `Y`'s lod should be greater than 0."
);
PADDLE_ENFORCE_LT
(
ref_level
,
y_lod
.
size
(),
"Value of attribute `ref_level` should be smaller than "
"level number of Y's lod."
);
PADDLE_ENFORCE
(
ref_level
==
-
1
||
(
ref_level
>=
0
&&
ref_level
<
y_lod
.
size
()),
"Invlid `ref_level`, which should be either equal to -1 "
"or in [0, %d)"
,
y_lod
.
size
());
if
(
y_lod
[
ref_level
].
size
()
<
1
)
{
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
x
,
context
.
GetPlace
(),
out
);
return
;
}
if
(
x_lod
.
size
()
==
0
)
{
int
out_start
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
auto
x_sub_tensor
=
x
->
Slice
(
i
-
1
,
i
);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
1
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
out_start
++
;
}
}
}
else
{
auto
&
out_lod
=
*
out
->
mutable_lod
();
auto
&
out_lod
=
*
out
->
mutable_lod
();
if
(
x_lod
.
size
()
==
1
)
{
out_lod
.
resize
(
1
);
out_lod
[
0
].
resize
(
1
);
out_lod
[
0
][
0
]
=
0
;
int
out_idx
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
int
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
auto
x_sub_tensor
=
x
->
Slice
(
x_lod
[
0
][
i
],
x_lod
[
0
][
i
-
1
]);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
auto
out_sub_tensor
=
out
->
Slice
(
out_lod
[
0
][
out_idx
],
out_lod
[
0
][
out_idx
]
+
x_seq_len
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
out_lod
[
0
].
push_back
(
out_lod
[
0
][
out_idx
]
+
x_seq_len
);
out_idx
++
;
out_lod
[
0
]
=
{
0
};
}
int
out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
int
x_start
=
i
-
1
;
int
x_end
=
i
;
if
(
x_lod
.
size
()
==
1
)
{
x_start
=
x_lod
[
0
][
i
-
1
];
x_end
=
x_lod
[
0
][
i
];
}
int
x_seq_len
=
x_end
-
x_start
;
auto
x_sub_tensor
=
x
->
Slice
(
x_start
,
x_end
);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
int
out_start
=
out_offset
;
if
(
x_lod
.
size
()
==
1
)
{
out_start
=
out_lod
[
0
][
out_offset
];
out_lod
[
0
].
push_back
(
x_seq_len
);
}
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
x_seq_len
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
out_offset
++
;
}
}
}
...
...
@@ -99,27 +100,49 @@ template <typename DeviceContext, typename T>
class
SequenceExpandGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
d
_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
g
_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_last_level
=
out
->
lod
().
back
();
d_x
->
set_lod
(
x
->
lod
());
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
size_t
element_len
=
d_out
->
numel
()
/
d_out
->
dims
()[
0
];
for
(
size_t
i
=
0
;
i
<
out_last_level
.
size
()
-
1
;
++
i
)
{
size_t
repeat
=
out_last_level
[
i
+
1
]
-
out_last_level
[
i
];
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
d_out_t
(
d_out_data
,
static_cast
<
int
>
(
repeat
),
element_len
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
d_x_t
(
d_x_data
,
static_cast
<
int
>
(
element_len
));
auto
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
d_x_t
.
device
(
*
place
)
=
d_out_t
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
d_out_data
+=
(
repeat
*
element_len
);
d_x_data
+=
element_len
;
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
auto
*
g_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
int
ref_level
=
context
.
Attr
<
int
>
(
"ref_level"
);
g_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
g_x
->
set_lod
(
x
->
lod
());
auto
&
x_lod
=
x
->
lod
();
auto
&
y_lod
=
y
->
lod
();
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
// just copy the gradient
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
g_out
,
context
.
GetPlace
(),
g_x
);
return
;
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
g_out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
if
(
repeat_num
>
0
)
{
int
x_start
=
i
-
1
;
int
x_end
=
i
;
if
(
x_lod
.
size
()
==
1
)
{
x_start
=
x_lod
[
0
][
i
-
1
];
x_end
=
x_lod
[
0
][
i
];
}
int
x_seq_len
=
x_end
-
x_start
;
auto
column
=
x_seq_len
*
x
->
dims
()[
1
];
auto
g_x_sub
=
g_x
->
Slice
(
x_start
,
x_end
);
g_x_sub
=
framework
::
ReshapeToMatrix
(
g_x_sub
,
column
);
int
g_out_end
=
g_out_offset
+
repeat_num
*
x_seq_len
;
auto
g_out_sub
=
g_out
->
Slice
(
g_out_offset
,
g_out_end
);
g_out_sub
=
framework
::
ReshapeToMatrix
(
g_out_sub
,
column
);
math
::
ColwiseSum
<
DeviceContext
,
T
>
col_sum
;
col_sum
(
dev_ctx
,
g_out_sub
,
&
g_x_sub
);
g_out_offset
+=
repeat_num
*
x_seq_len
;
}
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录