concat_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
P
phlrain 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
18 19
#include <vector>

P
phlrain 已提交
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

24 25
namespace paddle {
namespace operators {
26
using Tensor = framework::Tensor;
27 28 29 30 31

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
  void InferShape(framework::InferShapeContext *ctx) const override {
33 34
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "Concat");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Concat");
35

36
    auto inputs_dims = ctx->GetInputsDim("X");
37

38
    const size_t inputs_num = inputs_dims.size();
39 40 41 42 43
    PADDLE_ENFORCE_GT(
        inputs_num, static_cast<size_t>(0),
        platform::errors::InvalidArgument(
            "The number of input tensors in concat op should > 0. But "
            "received inputs' length is 0."));
44
    if (inputs_num == 1) {
45 46
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
47

48 49 50 51 52 53 54 55 56 57 58 59 60
    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      size_t axis =
          ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                      static_cast<int64_t>(inputs_dims[0].size()));
      framework::DDim out_dims =
          ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis);
      if (out_dims[axis] < 0) {
        out_dims[axis] = -1;
61
      }
62 63
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
64 65
    }
  }
P
phlrain 已提交
66 67 68 69

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
70
    auto inputs = ctx.MultiInput<Tensor>("X");
71 72
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
73 74 75
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
76 77 78 79 80 81 82
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
      PADDLE_THROW("All Inputs of Concat OP are Empty!");
    }
P
phlrain 已提交
83 84 85 86 87 88 89 90 91
#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
92 93 94 95 96 97 98 99 100 101

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
102 103 104 105
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() override {
107 108
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
109 110 111 112
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
        .SetDefault(false);
113
    AddAttr<int>("axis",
114 115 116 117
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
118
        .SetDefault(0);
119 120 121 122 123 124
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
125 126 127 128 129 130
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
131 132 133 134 135 136 137 138 139 140 141 142 143
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
144 145 146
  }
};

147 148
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
149
  using framework::OperatorWithKernel::OperatorWithKernel;
150

151
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
152 153 154
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
155 156

    ctx->ShareAllLoD(in_x, out_x_g_n);
157
  }
P
phlrain 已提交
158 159 160 161

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
162 163 164
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
P
phlrain 已提交
165
  }
166 167 168 169 170 171 172 173 174 175

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
176 177
};

178
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInference, "X");
P
phlrain 已提交
179

H
hong 已提交
180 181
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
182
 public:
H
hong 已提交
183
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
184 185

 protected:
186
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
187
    op->SetType("concat_grad");
H
hong 已提交
188
    op->SetInput("X", this->Input("X"));
H
hong 已提交
189 190 191
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
192 193 194
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
195
  }
196 197
};

198 199 200 201
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
202
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
203 204
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>);
P
phlrain 已提交
205 206
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
                  ops::ConcatOpGradNoNeedBufferVarInference);
C
chengduoZH 已提交
207
REGISTER_OP_CPU_KERNEL(
208 209 210 211
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>);
C
chengduoZH 已提交
212 213
REGISTER_OP_CPU_KERNEL(
    concat_grad,
214 215 216 217
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>);