concat_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
P
phlrain 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
18 19
#include <vector>

P
phlrain 已提交
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

24 25
namespace paddle {
namespace operators {
26
using Tensor = framework::Tensor;
27 28 29 30 31

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
  void InferShape(framework::InferShapeContext *ctx) const override {
33
    PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
H
hutuxian 已提交
34
                      "Inputs(X) of ConcatOp should not be empty.");
Q
Qiao Longfei 已提交
35 36
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ConcatOp should not be null.");
37

Q
Qiao Longfei 已提交
38
    auto ins = ctx->GetInputsDim("X");
39 40 41 42
    size_t axis =
        ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                    static_cast<int64_t>(ins[0].size()));

43
    const size_t n = ins.size();
44 45 46
    PADDLE_ENFORCE_GT(n, 0,
                      "ShapeError: Input tensors count should > 0. But "
                      "recevied inputs' length is 0.");
47 48 49
    if (n == 1) {
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
50

Q
Qiao Longfei 已提交
51
    auto out_dims = ins[0];
52 53 54 55
    size_t in_zero_dims_size = out_dims.size();
    for (size_t i = 1; i < n; i++) {
      for (size_t j = 0; j < in_zero_dims_size; j++) {
        if (j == axis) {
P
phlrain 已提交
56 57 58
          if (ctx->IsRuntime()) {
            out_dims[axis] += ins[i][j];
          } else {
P
phlrain 已提交
59
            if (ins[i][j] == -1) {
P
phlrain 已提交
60 61 62 63 64
              out_dims[axis] = -1;
            } else {
              out_dims[axis] += ins[i][j];
            }
          }
Q
Qiao Longfei 已提交
65
        } else {
H
Hongyu Liu 已提交
66 67 68
          bool check_shape =
              ctx->IsRuntime() || (out_dims[j] > 0 && ins[i][j] > 0);
          if (check_shape) {
P
phlrain 已提交
69
            // check all shape in run time
70 71 72 73 74 75 76 77
            PADDLE_ENFORCE_EQ(
                out_dims[j], ins[i][j],
                "ShapeError: Input tensors should have same "
                "dimensions(or specific dimension = -1) except the axis. "
                "But recevied axis = %s, input[0]'s shape = "
                "[%s], input[%s]'s shape = [%s], the \"%s\" "
                "dimension of input[%s] is unexpected",
                axis, ins[0], i, ins[j], j, i);
P
phlrain 已提交
78
          }
79 80 81
        }
      }
    }
Q
Qiao Longfei 已提交
82 83 84
    if (out_dims[axis] < 0) {
      out_dims[axis] = -1;
    }
Q
Qiao Longfei 已提交
85
    ctx->SetOutputDim("Out", out_dims);
Q
Qiao Longfei 已提交
86
    ctx->ShareLoD("X", /*->*/ "Out");
87
  }
P
phlrain 已提交
88 89 90 91

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
92
    auto inputs = ctx.MultiInput<Tensor>("X");
93 94
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
95 96 97
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
98 99 100 101 102 103 104
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
      PADDLE_THROW("All Inputs of Concat OP are Empty!");
    }
P
phlrain 已提交
105 106 107 108 109 110 111 112 113
#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
114 115 116 117
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
118
  void Make() override {
119 120
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
121 122 123 124
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
        .SetDefault(false);
125
    AddAttr<int>("axis",
126 127 128 129
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
130
        .SetDefault(0);
131 132 133 134 135 136
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
137 138 139 140 141 142 143 144 145 146 147 148 149
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
150 151 152
  }
};

153 154
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
155
  using framework::OperatorWithKernel::OperatorWithKernel;
156

157
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
    auto &in_names = ctx->Inputs(in_x);
    auto &out_names = ctx->Outputs(out_x_g_n);
    PADDLE_ENFORCE_EQ(
        in_names.size(), out_names.size(),
        "The number of arguments in %s[%d] and %s[%d] is not equal.", in_x,
        in_names.size(), out_x_g_n, out_names.size());
    for (size_t i = 0; i < in_names.size(); ++i) {
      if (out_names[i] != framework::kEmptyVarName) {
        ctx->ShareLoD(in_x, out_x_g_n, i, i);
      }
    }
172
  }
P
phlrain 已提交
173 174 175 176

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
177 178 179
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
P
phlrain 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ConcatOpGradNoNeedBufferVarInference,
                                      "X");

class ConcatGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("concat_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
    op->SetAttrMap(Attrs());
    return op;
  }
200 201
};

202 203 204 205
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
206
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
P
phlrain 已提交
207 208 209
                  ops::ConcatGradOpDescMaker);
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
                  ops::ConcatOpGradNoNeedBufferVarInference);
C
chengduoZH 已提交
210
REGISTER_OP_CPU_KERNEL(
211 212 213 214
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>);
C
chengduoZH 已提交
215 216
REGISTER_OP_CPU_KERNEL(
    concat_grad,
217 218 219 220
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>);