unique_consecutive_op.cc 5.1 KB
Newer Older
D
duanboqiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/op_registry.h"
D
duanboqiang 已提交
16 17 18 19 20 21 22 23 24 25 26
#include "paddle/fluid/framework/op_version_registry.h"

namespace paddle {
namespace operators {

class UniqueConsecutiveOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "unique_consecutive");
27 28
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "unique_consecutive");
D
duanboqiang 已提交
29 30 31 32 33 34

    auto in_dims = ctx->GetInputDim("X");
    bool return_inverse = ctx->Attrs().Get<bool>("return_inverse");
    bool return_counts = ctx->Attrs().Get<bool>("return_counts");
    auto axis_vec = ctx->Attrs().Get<std::vector<int>>("axis");
    if (return_inverse) {
35 36
      OP_INOUT_CHECK(
          ctx->HasOutput("Index"), "Output", "Index", "unique_consecutive");
D
duanboqiang 已提交
37 38
    }
    if (return_counts) {
39 40
      OP_INOUT_CHECK(
          ctx->HasOutput("Counts"), "Output", "Counts", "unique_consecutive");
D
duanboqiang 已提交
41 42 43 44 45
    }

    if (axis_vec.empty()) {
      ctx->SetOutputDim("Out", {-1});
      if (return_inverse) {
46
        ctx->SetOutputDim("Index", {phi::product(in_dims)});
D
duanboqiang 已提交
47 48 49 50 51 52 53
      }
    } else {
      int axis = axis_vec[0];
      if (axis < 0) {
        axis += in_dims.size();
      }
      PADDLE_ENFORCE_LT(
54 55
          axis,
          in_dims.size(),
D
duanboqiang 已提交
56 57
          platform::errors::InvalidArgument("The axis(%d) should be less than "
                                            "the dimension size(%d) of x.",
58 59
                                            axis,
                                            in_dims.size()));
D
duanboqiang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
      auto out_dims = in_dims;
      out_dims[axis] = -1;
      ctx->SetOutputDim("Out", out_dims);
      if (return_inverse) {
        ctx->SetOutputDim("Index", {in_dims[axis]});
      }
    }
    if (return_counts) {
      ctx->SetOutputDim("Counts", {-1});
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class UniqueConsecutiveOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor of unique_consecutive op.");
    AddAttr<int>("dtype",
                 "(int, default 5(FP32)) "
                 "data type for output index")
        .SetDefault(framework::proto::VarType::FP32);

    AddOutput("Out", "A unique consecutive subsequence for input tensor.");
    AddOutput("Index",
              "The indices for where elements in the original input ended up "
              "in the returned unique tensor.")
        .AsDispensable();
    AddOutput("Counts", "The counts for each unique element.").AsDispensable();
    AddAttr<bool>(
        "return_inverse",
        "If True, also return the indices for where elements"
        " in the original input ended up in the returned unique tensor.")
        .SetDefault(false);
    AddAttr<bool>("return_counts",
                  "If True, also return the counts for each unique element.")
        .SetDefault(false);
    AddAttr<std::vector<int>>(
        "axis",
        "The axis to apply unique. If None, the input will be flattened.")
        .SetDefault({});
    AddComment(R"DOC(
    This function is different from paddle.unique() in the sense that this
    function only eliminates consecutive duplicate values.
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
117 118
REGISTER_OP_WITHOUT_GRADIENT(unique_consecutive,
                             ops::UniqueConsecutiveOp,
D
duanboqiang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                             ops::UniqueConsecutiveOpMaker);
REGISTER_OP_VERSION(unique_consecutive)
    .AddCheckpoint(
        R"ROC(
        Upgrade unique_consecutive, add 2 outputs [Indices, Counts] and 3 attribute
        [return_inverse, return_counts, axis].
      )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewOutput("Counts", "The counts for each unique element.")
            .NewAttr("return_inverse",
                     "If True, also return the indices for where elements"
                     " in the original input ended up in the returned unique "
                     "tensor.",
                     false)
            .NewAttr("return_counts",
                     "If True, also return the counts for each unique element.",
                     false)
            .NewAttr("axis",
                     "The axis to apply unique. If None, the input will be "
                     "flattened.",
                     std::vector<int>{}));