Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
be746adf
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
be746adf
编写于
7月 12, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
7月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[operator migration] Migrate kernel of unique consecutive op. (#44228)
上级
f1111f3c
变更
7
展开全部
隐藏空白更改
内联
并排
Showing
7 changed file
with
764 addition
and
312 deletion
+764
-312
paddle/fluid/operators/unique_consecutive_op.cc
paddle/fluid/operators/unique_consecutive_op.cc
+1
-7
paddle/phi/kernels/cpu/unique_consecutive_functor.h
paddle/phi/kernels/cpu/unique_consecutive_functor.h
+261
-0
paddle/phi/kernels/cpu/unique_consecutive_kernel.cc
paddle/phi/kernels/cpu/unique_consecutive_kernel.cc
+77
-0
paddle/phi/kernels/gpu/unique_consecutive_functor.h
paddle/phi/kernels/gpu/unique_consecutive_functor.h
+280
-305
paddle/phi/kernels/gpu/unique_consecutive_kernel.cu
paddle/phi/kernels/gpu/unique_consecutive_kernel.cu
+81
-0
paddle/phi/kernels/unique_consecutive_kernel.h
paddle/phi/kernels/unique_consecutive_kernel.h
+34
-0
paddle/phi/ops/compat/unique_consecutive_sig.cc
paddle/phi/ops/compat/unique_consecutive_sig.cc
+30
-0
未找到文件。
paddle/fluid/operators/unique_consecutive_op.cc
浏览文件 @
be746adf
...
...
@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/unique_consecutive_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
...
...
@@ -118,11 +117,6 @@ namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT
(
unique_consecutive
,
ops
::
UniqueConsecutiveOp
,
ops
::
UniqueConsecutiveOpMaker
);
REGISTER_OP_CPU_KERNEL
(
unique_consecutive
,
ops
::
UniqueConsecutiveKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
UniqueConsecutiveKernel
<
phi
::
CPUContext
,
double
>
,
ops
::
UniqueConsecutiveKernel
<
phi
::
CPUContext
,
int32_t
>
,
ops
::
UniqueConsecutiveKernel
<
phi
::
CPUContext
,
int64_t
>
);
REGISTER_OP_VERSION
(
unique_consecutive
)
.
AddCheckpoint
(
R"ROC(
...
...
paddle/
fluid/operators/unique_consecutive_op
.h
→
paddle/
phi/kernels/cpu/unique_consecutive_functor
.h
浏览文件 @
be746adf
/
* Copyright (c) 2019
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/
/ Copyright (c) 2022
PaddlePaddle Authors. All Rights Reserved.
//
//
Licensed under the Apache License, Version 2.0 (the "License");
//
you may not use this file except in compliance with the License.
//
You may obtain a copy of the License at
//
//
http://www.apache.org/licenses/LICENSE-2.0
//
//
Unless required by applicable law or agreed to in writing, software
//
distributed under the License is distributed on an "AS IS" BASIS,
//
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//
See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/
op_registry
.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/
fluid/operators/transpose_op
.h"
#include "paddle/
fluid/operators/unique_op
.h"
#include "paddle/fluid/framework/
tensor_util
.h"
#include "paddle/
phi/core/dense_tensor
.h"
#include "paddle/
phi/kernels/funcs/concat_and_split_functor
.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/unique_functor.h"
namespace
phi
{
namespace
paddle
{
namespace
operators
{
template
<
typename
InT
,
typename
IndexT
>
static
void
UniqueConsecutiveFlattendTensor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_inverse
,
bool
return_counts
)
{
template
<
typename
InT
,
typename
IndexT
,
typename
Context
>
static
void
UniqueConsecutiveFlattenedTensor
(
const
Context
&
context
,
const
DenseTensor
&
in
,
DenseTensor
*
out
,
bool
return_inverse
,
bool
return_counts
,
DenseTensor
*
inverse
,
DenseTensor
*
count
)
{
const
InT
*
in_data
=
in
.
data
<
InT
>
();
std
::
vector
<
InT
>
out_vec
(
in
.
numel
());
std
::
vector
<
IndexT
>
inverse_vec
(
in
.
numel
());
...
...
@@ -65,27 +60,57 @@ static void UniqueConsecutiveFlattendTensor(
out_vec
.
resize
(
output_size
);
out
->
Resize
(
phi
::
make_ddim
({
output_size
}));
auto
*
out_data
=
out
->
mutable_data
<
InT
>
(
context
.
GetPlace
()
);
auto
*
out_data
=
context
.
template
Alloc
<
InT
>(
out
);
std
::
copy
(
out_vec
.
begin
(),
out_vec
.
end
(),
out_data
);
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
inverse
->
Resize
(
phi
::
make_ddim
({
in
.
numel
()}));
auto
*
inverse_data
=
inverse
->
mutable_data
<
IndexT
>
(
context
.
GetPlace
()
);
auto
*
inverse_data
=
context
.
template
Alloc
<
IndexT
>(
inverse
);
std
::
copy
(
inverse_vec
.
begin
(),
inverse_vec
.
end
(),
inverse_data
);
}
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
count
->
Resize
(
phi
::
make_ddim
({
out
->
numel
()}));
auto
*
counts_data
=
co
unt
->
mutable_data
<
IndexT
>
(
context
.
GetPlace
()
);
auto
*
counts_data
=
co
ntext
.
template
Alloc
<
IndexT
>(
count
);
std
::
copy
(
counts_vec
.
begin
(),
counts_vec
.
end
(),
counts_data
);
}
}
template
<
class
ForwardIt
,
typename
InT
,
typename
IndexT
>
template
<
typename
Context
,
typename
InT
>
struct
UniqueConsecutiveFlattenedTensorFunctor
{
const
Context
&
ctx_
;
const
DenseTensor
&
in_
;
DenseTensor
*
out_
;
const
bool
return_inverse_
;
const
bool
return_counts_
;
DenseTensor
*
inverse_
;
DenseTensor
*
count_
;
UniqueConsecutiveFlattenedTensorFunctor
(
const
Context
&
context
,
const
DenseTensor
&
in
,
DenseTensor
*
out
,
bool
return_inverse
,
bool
return_counts
,
DenseTensor
*
inverse
,
DenseTensor
*
count
)
:
ctx_
(
context
),
in_
(
in
),
out_
(
out
),
return_inverse_
(
return_inverse
),
return_counts_
(
return_counts
),
inverse_
(
inverse
),
count_
(
count
)
{}
template
<
typename
IndexT
>
void
apply
()
const
{
UniqueConsecutiveFlattenedTensor
<
InT
,
IndexT
,
Context
>
(
ctx_
,
in_
,
out_
,
return_inverse_
,
return_counts_
,
inverse_
,
count_
);
}
};
template
<
typename
Context
,
class
ForwardIt
,
typename
InT
,
typename
IndexT
>
static
ForwardIt
UniqueConsecutiveDimImpl
(
const
framework
::
Execution
Context
&
context
,
const
Context
&
context
,
ForwardIt
first
,
ForwardIt
last
,
const
std
::
vector
<
IndexT
>&
sorted_indices_vec
,
...
...
@@ -104,7 +129,7 @@ static ForwardIt UniqueConsecutiveDimImpl(
while
(
++
first
!=
last
)
{
int64_t
idx_first
=
std
::
distance
(
begin
,
first
);
int64_t
idx_result
=
std
::
distance
(
begin
,
result
);
if
(
!
Equal
<
InT
>
(
*
result
,
*
first
))
{
if
(
!
phi
::
funcs
::
Equal
<
InT
>
(
*
result
,
*
first
))
{
if
(
++
result
!=
first
)
{
*
result
=
std
::
move
(
*
first
);
}
...
...
@@ -116,13 +141,15 @@ static ForwardIt UniqueConsecutiveDimImpl(
return
++
result
;
}
template
<
typename
Device
Context
,
typename
InT
,
typename
IndexT
>
static
void
UniqueConsecutiveDim
(
const
framework
::
Execution
Context
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
template
<
typename
Context
,
typename
InT
,
typename
IndexT
>
static
void
UniqueConsecutiveDim
(
const
Context
&
context
,
const
Dense
Tensor
&
in
,
Dense
Tensor
*
out
,
bool
return_inverse
,
bool
return_counts
,
int
axis
)
{
int
axis
,
DenseTensor
*
inverse
,
DenseTensor
*
count
)
{
// transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
std
::
vector
<
int
>
permute
(
in
.
dims
().
size
());
std
::
iota
(
permute
.
begin
(),
permute
.
end
(),
0
);
...
...
@@ -131,15 +158,14 @@ static void UniqueConsecutiveDim(const framework::ExecutionContext& context,
std
::
vector
<
int64_t
>
in_trans_dims_vec
(
phi
::
vectorize
(
in
.
dims
()));
in_trans_dims_vec
[
axis
]
=
in
.
dims
()[
0
];
in_trans_dims_vec
[
0
]
=
in
.
dims
()[
axis
];
framework
::
Tensor
in_trans
;
framework
::
DDim
in_trans_dims
=
phi
::
make_ddim
(
in_trans_dims_vec
);
Dense
Tensor
in_trans
;
DDim
in_trans_dims
=
phi
::
make_ddim
(
in_trans_dims_vec
);
in_trans
.
Resize
(
in_trans_dims
);
in_trans
.
mutable_data
<
InT
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
TransCompute
<
DeviceContext
,
InT
>
(
in
.
dims
().
size
(),
dev_ctx
,
in
,
&
in_trans
,
permute
);
context
.
template
Alloc
<
InT
>(
&
in_trans
);
phi
::
funcs
::
TransCompute
<
Context
,
InT
>
(
in
.
dims
().
size
(),
context
,
in
,
&
in_trans
,
permute
);
// reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
framework
::
DDim
in_trans_flat_dims
=
phi
::
flatten_to_2d
(
in_trans_dims
,
1
);
DDim
in_trans_flat_dims
=
phi
::
flatten_to_2d
(
in_trans_dims
,
1
);
in_trans
.
Resize
(
in_trans_flat_dims
);
std
::
vector
<
IndexT
>
sorted_indices_vec
(
in_trans
.
dims
()[
0
]);
...
...
@@ -148,140 +174,88 @@ static void UniqueConsecutiveDim(const framework::ExecutionContext& context,
const
InT
*
in_trans_data
=
in_trans
.
data
<
InT
>
();
// sort tensor according to indices
framework
::
Tensor
input_sorted
;
Dense
Tensor
input_sorted
;
input_sorted
.
Resize
(
in_trans_dims
);
input_sorted
.
mutable_data
<
InT
>
(
context
.
GetPlace
()
);
context
.
template
Alloc
<
InT
>(
&
input_sorted
);
InT
*
input_sorted_data
=
input_sorted
.
data
<
InT
>
();
for
(
size_t
i
=
0
;
i
<
sorted_indices_vec
.
size
();
++
i
)
{
memcpy
(
input_sorted_data
+
i
*
col
,
in_trans_data
+
static_cast
<
int64_t
>
(
sorted_indices_vec
[
i
])
*
col
,
col
*
sizeof
(
InT
));
}
std
::
vector
<
framework
::
Tensor
>
input_unbind
=
Unbind
(
input_sorted
);
std
::
vector
<
DenseTensor
>
input_unbind
=
phi
::
funcs
::
Unbind
(
input_sorted
);
std
::
vector
<
IndexT
>
inverse_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
IndexT
>
counts_vec
(
sorted_indices_vec
.
size
(),
0
);
auto
last
=
UniqueConsecutiveDimImpl
<
std
::
vector
<
framework
::
Tensor
>::
iterator
,
InT
>
(
context
,
input_unbind
.
begin
(),
input_unbind
.
end
(),
sorted_indices_vec
,
&
inverse_vec
,
&
counts_vec
);
auto
last
=
UniqueConsecutiveDimImpl
<
Context
,
std
::
vector
<
DenseTensor
>::
iterator
,
InT
>
(
context
,
input_unbind
.
begin
(),
input_unbind
.
end
(),
sorted_indices_vec
,
&
inverse_vec
,
&
counts_vec
);
input_unbind
.
erase
(
last
,
input_unbind
.
end
());
counts_vec
.
erase
(
counts_vec
.
begin
()
+
input_unbind
.
size
(),
counts_vec
.
end
());
math
::
ConcatFunctor
<
Device
Context
,
InT
>
concat_functor
;
framework
::
Tensor
out_trans
;
phi
::
funcs
::
ConcatFunctor
<
Context
,
InT
>
concat_functor
;
Dense
Tensor
out_trans
;
std
::
vector
<
int64_t
>
out_trans_dims_vec
=
in_trans_dims_vec
;
out_trans_dims_vec
[
0
]
=
input_unbind
.
size
();
out_trans
.
Resize
(
phi
::
make_ddim
(
out_trans_dims_vec
));
out_trans
.
mutable_data
<
InT
>
(
context
.
GetPlace
()
);
context
.
template
Alloc
<
InT
>(
&
out_trans
);
std
::
swap
(
out_trans_dims_vec
[
0
],
out_trans_dims_vec
[
axis
]);
out
->
Resize
(
phi
::
make_ddim
(
out_trans_dims_vec
));
out
->
mutable_data
<
InT
>
(
context
.
GetPlace
()
);
concat_functor
(
dev_ctx
,
input_unbind
,
0
,
&
out_trans
);
TransCompute
<
Device
Context
,
InT
>
(
out_trans
.
dims
().
size
(),
dev_ctx
,
out_trans
,
out
,
permute
);
context
.
template
Alloc
<
InT
>(
out
);
concat_functor
(
context
,
input_unbind
,
0
,
&
out_trans
);
phi
::
funcs
::
TransCompute
<
Context
,
InT
>
(
out_trans
.
dims
().
size
(),
context
,
out_trans
,
out
,
permute
);
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
framework
::
TensorFromVector
(
inverse_vec
,
context
.
device_context
(),
inverse
);
paddle
::
framework
::
TensorFromVector
(
inverse_vec
,
context
,
inverse
);
}
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
framework
::
TensorFromVector
(
counts_vec
,
context
.
device_context
(),
count
);
paddle
::
framework
::
TensorFromVector
(
counts_vec
,
context
,
count
);
}
}
template
<
typename
DeviceContext
,
typename
InT
>
struct
UniqueConsecutiveFlattendTensorFunctor
{
const
framework
::
ExecutionContext
&
ctx_
;
const
framework
::
Tensor
&
in_
;
framework
::
Tensor
*
out_
;
const
bool
return_inverse_
;
const
bool
return_counts_
;
UniqueConsecutiveFlattendTensorFunctor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_inverse
,
bool
return_counts
)
:
ctx_
(
context
),
in_
(
in
),
out_
(
out
),
return_inverse_
(
return_inverse
),
return_counts_
(
return_counts
)
{}
template
<
typename
IndexT
>
void
apply
()
const
{
UniqueConsecutiveFlattendTensor
<
InT
,
IndexT
>
(
ctx_
,
in_
,
out_
,
return_inverse_
,
return_counts_
);
}
};
template
<
typename
DeviceContext
,
typename
InT
>
template
<
typename
Context
,
typename
InT
>
struct
UniqueConsecutiveDimFunctor
{
const
framework
::
Execution
Context
&
ctx_
;
const
framework
::
Tensor
&
in_
;
framework
::
Tensor
*
out_
;
const
Context
&
ctx_
;
const
Dense
Tensor
&
in_
;
Dense
Tensor
*
out_
;
const
int
axis_
;
const
bool
return_inverse_
;
const
bool
return_counts_
;
UniqueConsecutiveDimFunctor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
DenseTensor
*
inverse_
;
DenseTensor
*
count_
;
UniqueConsecutiveDimFunctor
(
const
Context
&
context
,
const
DenseTensor
&
in
,
DenseTensor
*
out
,
const
int
axis
,
bool
return_inverse
,
bool
return_counts
)
bool
return_counts
,
DenseTensor
*
inverse
,
DenseTensor
*
count
)
:
ctx_
(
context
),
in_
(
in
),
out_
(
out
),
axis_
(
axis
),
return_inverse_
(
return_inverse
),
return_counts_
(
return_counts
)
{}
return_counts_
(
return_counts
),
inverse_
(
inverse
),
count_
(
count
)
{}
template
<
typename
IndexT
>
void
apply
()
const
{
UniqueConsecutiveDim
<
DeviceContext
,
InT
,
IndexT
>
(
ctx_
,
in_
,
out_
,
return_inverse_
,
return_counts_
,
axis_
);
UniqueConsecutiveDim
<
Context
,
InT
,
IndexT
>
(
ctx_
,
in_
,
out_
,
return_inverse_
,
return_counts_
,
axis_
,
inverse_
,
count_
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
UniqueConsecutiveKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
if
(
data_type
==
framework
::
proto
::
VarType
::
INT32
)
{
PADDLE_ENFORCE_LE
(
x
->
numel
(),
INT_MAX
,
platform
::
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be less than or "
"equal to INT_MAX, but received num is %d. Please set `dtype` to "
"int64."
,
x
->
numel
()));
}
std
::
vector
<
int
>
axis_vec
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
bool
return_inverse
=
context
.
Attr
<
bool
>
(
"return_inverse"
);
bool
return_counts
=
context
.
Attr
<
bool
>
(
"return_counts"
);
if
(
axis_vec
.
empty
())
{
framework
::
VisitDataTypeTiny
(
data_type
,
UniqueConsecutiveFlattendTensorFunctor
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
return_inverse
,
return_counts
));
}
else
{
int
axis
=
axis_vec
[
0
];
framework
::
VisitDataTypeTiny
(
data_type
,
UniqueConsecutiveDimFunctor
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
axis
,
return_inverse
,
return_counts
));
}
}
};
}
// namespace operators
}
// namespace paddle
}
// namespace phi
paddle/phi/kernels/cpu/unique_consecutive_kernel.cc
0 → 100644
浏览文件 @
be746adf
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/unique_consecutive_kernel.h"
#include "paddle/phi/kernels/cpu/unique_consecutive_functor.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/errors.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/data_type.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniqueConsecutiveKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
bool
return_inverse
,
bool
return_counts
,
const
std
::
vector
<
int
>&
axis
,
int
dtype
,
DenseTensor
*
out
,
DenseTensor
*
index
,
DenseTensor
*
counts
)
{
auto
data_type
=
static_cast
<
paddle
::
framework
::
proto
::
VarType
::
Type
>
(
dtype
);
if
(
data_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
PADDLE_ENFORCE_LE
(
x
.
numel
(),
INT_MAX
,
phi
::
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be less than or "
"equal to INT_MAX, but received num is %d. Please set `dtype` to "
"int64."
,
x
.
numel
()));
}
if
(
axis
.
empty
())
{
paddle
::
framework
::
VisitDataTypeTiny
(
data_type
,
UniqueConsecutiveFlattenedTensorFunctor
<
Context
,
T
>
(
dev_ctx
,
x
,
out
,
return_inverse
,
return_counts
,
index
,
counts
));
}
else
{
int
valid_axis
=
axis
[
0
];
paddle
::
framework
::
VisitDataTypeTiny
(
data_type
,
UniqueConsecutiveDimFunctor
<
Context
,
T
>
(
dev_ctx
,
x
,
out
,
valid_axis
,
return_inverse
,
return_counts
,
index
,
counts
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
unique_consecutive
,
CPU
,
ALL_LAYOUT
,
phi
::
UniqueConsecutiveKernel
,
float
,
double
,
int32_t
,
int64_t
)
{}
paddle/
fluid/operators/unique_consecutive_op.cu
→
paddle/
phi/kernels/gpu/unique_consecutive_functor.h
浏览文件 @
be746adf
此差异已折叠。
点击以展开。
paddle/phi/kernels/gpu/unique_consecutive_kernel.cu
0 → 100644
浏览文件 @
be746adf
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/kernels/unique_consecutive_kernel.h"
#include "paddle/phi/kernels/gpu/unique_consecutive_functor.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/errors.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/data_type.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniqueConsecutiveKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
bool
return_inverse
,
bool
return_counts
,
const
std
::
vector
<
int
>&
axis
,
int
dtype
,
DenseTensor
*
out
,
DenseTensor
*
index
,
DenseTensor
*
counts
)
{
auto
data_type
=
static_cast
<
paddle
::
framework
::
proto
::
VarType
::
Type
>
(
dtype
);
if
(
data_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
PADDLE_ENFORCE_LE
(
x
.
numel
()
+
1
,
INT_MAX
,
phi
::
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be less than or "
"equal to INT_MAX, but received num is %d. Please set `dtype` to "
"int64."
,
x
.
numel
()));
}
// if 'axis' is not required, flatten the Tensor.
if
(
axis
.
empty
())
{
paddle
::
framework
::
VisitDataTypeTiny
(
data_type
,
UniqueConsecutiveFlattenedCUDAFunctor
<
Context
,
T
>
(
dev_ctx
,
x
,
out
,
return_inverse
,
return_counts
,
index
,
counts
));
}
else
{
// 'axis' is required.
int
valid_axis
=
axis
[
0
];
paddle
::
framework
::
VisitDataTypeTiny
(
data_type
,
UniqueConsecutiveDimsCUDAFunctor
<
Context
,
T
>
(
dev_ctx
,
x
,
out
,
valid_axis
,
return_inverse
,
return_counts
,
index
,
counts
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
unique_consecutive
,
GPU
,
ALL_LAYOUT
,
phi
::
UniqueConsecutiveKernel
,
float
,
double
,
int32_t
,
int64_t
)
{}
paddle/phi/kernels/unique_consecutive_kernel.h
0 → 100644
浏览文件 @
be746adf
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniqueConsecutiveKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
bool
return_inverse
,
bool
return_counts
,
const
std
::
vector
<
int
>&
axis
,
int
dtype
,
DenseTensor
*
out
,
DenseTensor
*
index
,
DenseTensor
*
counts
);
}
// namespace phi
paddle/phi/ops/compat/unique_consecutive_sig.cc
0 → 100644
浏览文件 @
be746adf
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
UniqueConsecutiveOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"unique_consecutive"
,
{
"X"
},
{
"return_inverse"
,
"return_counts"
,
"axis"
,
"dtype"
},
{
"Out"
,
"Index"
,
"Counts"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
unique_consecutive
,
phi
::
UniqueConsecutiveOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录