sequence_expand_op.h 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
D
dzhwinter 已提交
16
#include <numeric>  // std::iota
W
wanghaoshuang 已提交
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
D
dzhwinter 已提交
20
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaoshuang 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
D
dzhwinter 已提交
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
W
wanghaoshuang 已提交
29

D
dzhwinter 已提交
30 31
template <typename DeviceContext, typename T>
struct SequenceExpandFunctor {
D
dzhwinter 已提交
32 33 34 35 36
  void operator()(
      const DeviceContext& ctx, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out);
D
dzhwinter 已提交
37 38
};

D
dzhwinter 已提交
39 40
template <typename DeviceContext, typename T>
struct SequenceExpandGradFunctor {
D
dzhwinter 已提交
41 42 43 44 45
  void operator()(
      const DeviceContext& ctx, const LoDTensor& dout,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* dx);
D
dzhwinter 已提交
46
};
D
dzhwinter 已提交
47 48

template <typename T>
D
dzhwinter 已提交
49
struct SequenceExpandFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
50 51 52 53 54
  void operator()(
      const platform::CPUDeviceContext& context, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out) {
D
dzhwinter 已提交
55
    int out_offset = 0;
L
luotao1 已提交
56 57 58
    int x_item_length = x.numel() / x.dims()[0];
    auto out_data = out->data<T>();
    auto x_data = x.data<T>();
D
dzhwinter 已提交
59 60
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      int repeat_num = ref_lod[i] - ref_lod[i - 1];
D
dzhwinter 已提交
61 62 63 64 65
      int x_start = x_lod[i - 1];
      int x_end = x_lod[i];
      int x_seq_len = x_end - x_start;
      if (repeat_num > 0) {
        int out_start = out_offset;
D
dzhwinter 已提交
66 67
        if (out->lod().size() == 1) {
          out_start = out->lod()[0][out_offset];
D
dzhwinter 已提交
68
        }
L
luotao1 已提交
69 70 71 72 73 74 75 76
        for (int j = 0; j < repeat_num; j++) {
          for (int k = 0; k < x_seq_len; k++) {
            for (int l = 0; l < x_item_length; l++) {
              out_data[(out_start + j * x_seq_len + k) * x_item_length + l] =
                  x_data[(x_start + k) * x_item_length + l];
            }
          }
        }
D
dzhwinter 已提交
77
      }
D
dzhwinter 已提交
78
      out_offset += repeat_num;
D
dzhwinter 已提交
79
    }
D
dzhwinter 已提交
80
  }
D
dzhwinter 已提交
81
};
D
dzhwinter 已提交
82

Q
QI JUN 已提交
83
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
84
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
85 86 87
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
W
wanghaoshuang 已提交
88
    auto* y = context.Input<LoDTensor>("Y");
D
dzhwinter 已提交
89 90 91 92 93 94
    auto* out = context.Output<LoDTensor>("Out");

    int ref_level = context.Attr<int>("ref_level");
    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

95 96 97 98
    PADDLE_ENFORCE_EQ(y_lod.empty(), false,
                      "Input(Y) Tensor of SequenceExpandOp does not contain "
                      "LoD information.");

D
dzhwinter 已提交
99 100 101 102 103 104 105 106 107 108
    if (ref_level == -1) ref_level = y_lod.size() - 1;

    out->mutable_data<T>(context.GetPlace());

    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*x, context.GetPlace(), out);
      return;
    }

    // x lod level is at most 1.
D
dzhwinter 已提交
109 110 111
    framework::Vector<size_t> out_lod;
    if (x_lod.size() == 1) {
      out_lod.push_back(0);
D
dzhwinter 已提交
112 113 114 115 116 117 118
      int out_offset = 0;
      for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
        int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
        int x_start = x_lod[0][i - 1];
        int x_end = x_lod[0][i];
        int x_seq_len = x_end - x_start;
        for (int j = 0; j < repeat_num; ++j) {
D
dzhwinter 已提交
119
          out_lod.push_back(out_lod.back() + x_seq_len);
D
dzhwinter 已提交
120 121 122
          out_offset++;
        }
      }
D
dzhwinter 已提交
123 124 125 126 127 128 129 130 131 132 133
      // write lod to out if x has lod
      auto& ref_lod = *out->mutable_lod();
      ref_lod[0] = out_lod;
    }
    framework::Vector<size_t> ref_x_lod;
    if (x->lod().size() == 1) {
      ref_x_lod = x->lod()[0];
    } else {
      // x_lod doesn't has lod, use fake x lod, level = 0
      ref_x_lod.resize(x->dims()[0] + 1);
      std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0);
D
dzhwinter 已提交
134
    }
D
dzhwinter 已提交
135
    SequenceExpandFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
136 137
    functor(context.template device_context<DeviceContext>(), *x, ref_x_lod,
            y_lod[ref_level], out);
W
wanghaoshuang 已提交
138 139 140
  }
};

141 142 143 144 145 146 147 148 149 150 151 152
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
D
dzhwinter 已提交
153 154
template <typename T>
struct SequenceExpandGradFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
155 156 157 158 159 160 161 162
  void operator()(
      const platform::CPUDeviceContext& context, const LoDTensor& dout,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* dx) {
    int dout_offset = 0;
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      int repeat_num = ref_lod[i] - ref_lod[i - 1];
D
dzhwinter 已提交
163
      if (repeat_num > 0) {
D
dzhwinter 已提交
164 165
        int x_start = x_lod[i - 1];
        int x_end = x_lod[i];
D
dzhwinter 已提交
166
        int x_seq_len = x_end - x_start;
167
        if (x_seq_len == 0) continue;
D
dzhwinter 已提交
168 169 170 171 172 173 174 175
        auto dx_sub = dx->Slice(x_start, x_end);
        dx_sub.Resize(flatten_to_1d(dx_sub.dims()));
        int dout_end = dout_offset + repeat_num * x_seq_len;
        auto dout_sub = dout.Slice(dout_offset, dout_end);
        dout_sub.Resize({repeat_num, dx_sub.dims()[0]});
        math::ColwiseSum<platform::CPUDeviceContext, T> col_sum;
        col_sum(context, dout_sub, &dx_sub);
        dout_offset += repeat_num * x_seq_len;
D
dzhwinter 已提交
176
      }
W
wanghaoshuang 已提交
177
    }
W
wanghaoshuang 已提交
178 179 180
  }
};

D
dzhwinter 已提交
181 182 183 184
template <typename DeviceContext, typename T>
class SequenceExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
D
dzhwinter 已提交
185
    auto* g_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
D
dzhwinter 已提交
186
    auto* x = context.Input<LoDTensor>("X");
D
dzhwinter 已提交
187 188 189 190 191 192 193
    auto* y = context.Input<LoDTensor>("Y");
    auto* g_x = context.Output<LoDTensor>(framework::GradVarName("X"));
    int ref_level = context.Attr<int>("ref_level");

    g_x->mutable_data<T>(context.GetPlace());
    g_x->set_lod(x->lod());

Q
Qingsheng Li 已提交
194 195 196 197
    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, g_x, static_cast<T>(0));

D
dzhwinter 已提交
198 199 200 201 202 203 204
    auto& y_lod = y->lod();
    if (ref_level == -1) ref_level = y_lod.size() - 1;
    // just copy the gradient
    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*g_out, context.GetPlace(), g_x);
      return;
    }
D
dzhwinter 已提交
205

D
dzhwinter 已提交
206 207 208 209 210 211 212 213 214
    framework::Vector<size_t> ref_x_lod;
    framework::Vector<size_t> ref_lod = y_lod[ref_level];
    if (x->lod().size() == 1) {
      ref_x_lod = x->lod()[0];
    } else {
      // x_lod doesn't has lod, use fake x lod, level = 0
      ref_x_lod.resize(x->dims()[0] + 1);
      std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0);
    }
D
dzhwinter 已提交
215
    SequenceExpandGradFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
216 217
    functor(context.template device_context<DeviceContext>(), *g_out, ref_x_lod,
            ref_lod, g_x);
D
dzhwinter 已提交
218 219 220
  }
};

W
wanghaoshuang 已提交
221 222
}  // namespace operators
}  // namespace paddle