/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include // std::iota #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; template using EigenMatrix = framework::EigenMatrix; template struct SequenceExpandFunctor { void operator()( const DeviceContext& ctx, const LoDTensor& x, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ LoDTensor* out); }; template struct SequenceExpandGradFunctor { void operator()( const DeviceContext& ctx, const LoDTensor& dout, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ LoDTensor* dx); }; template struct SequenceExpandFunctor { void operator()( const platform::CPUDeviceContext& context, const LoDTensor& x, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ LoDTensor* out) { int out_offset = 0; int x_item_length = x.numel() / x.dims()[0]; auto out_data = out->data(); auto x_data = x.data(); for (size_t i = 1; i < ref_lod.size(); ++i) { int repeat_num = ref_lod[i] - ref_lod[i - 1]; int x_start = x_lod[i - 1]; int x_end = x_lod[i]; int x_seq_len = x_end - x_start; if (repeat_num > 0) { int out_start = out_offset; if (out->lod().size() == 1) { out_start = out->lod()[0][out_offset]; } for (int j = 0; j < repeat_num; j++) { for (int k = 0; k < x_seq_len; k++) { for (int l = 0; l < x_item_length; l++) { out_data[(out_start + j * x_seq_len + k) * x_item_length + l] = x_data[(x_start + k) * x_item_length + l]; } } } } out_offset += repeat_num; } } }; template class SequenceExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); auto* y = context.Input("Y"); auto* out = context.Output("Out"); int ref_level = context.Attr("ref_level"); auto& x_lod = x->lod(); auto& y_lod = y->lod(); PADDLE_ENFORCE_EQ(y_lod.empty(), false, "Input(Y) Tensor of SequenceExpandOp does not contain " "LoD information."); if (ref_level == -1) ref_level = y_lod.size() - 1; out->mutable_data(context.GetPlace()); if (y_lod[ref_level].size() <= 1) { framework::TensorCopy(*x, context.GetPlace(), out); return; } // x lod level is at most 1. framework::Vector out_lod; if (x_lod.size() == 1) { out_lod.push_back(0); int out_offset = 0; for (size_t i = 1; i < y_lod[ref_level].size(); ++i) { int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1]; int x_start = x_lod[0][i - 1]; int x_end = x_lod[0][i]; int x_seq_len = x_end - x_start; for (int j = 0; j < repeat_num; ++j) { out_lod.push_back(out_lod.back() + x_seq_len); out_offset++; } } // write lod to out if x has lod auto& ref_lod = *out->mutable_lod(); ref_lod[0] = out_lod; } framework::Vector ref_x_lod; if (x->lod().size() == 1) { ref_x_lod = x->lod()[0]; } else { // x_lod doesn't has lod, use fake x lod, level = 0 ref_x_lod.resize(x->dims()[0] + 1); std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0); } SequenceExpandFunctor functor; functor(context.template device_context(), *x, ref_x_lod, y_lod[ref_level], out); } }; /* *Given Grad(Out) * * Grad(Out).lod = [[0, 2], * [0, 3, 6]] * Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] * Then * Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)] * = [0.6, 1.5] * Grad(X).lod = Input(X).lod * * */ template struct SequenceExpandGradFunctor { void operator()( const platform::CPUDeviceContext& context, const LoDTensor& dout, const framework::Vector& x_lod, /*expand source lod*/ const framework::Vector& ref_lod, /*expand referenced lod*/ LoDTensor* dx) { int dout_offset = 0; for (size_t i = 1; i < ref_lod.size(); ++i) { int repeat_num = ref_lod[i] - ref_lod[i - 1]; if (repeat_num > 0) { int x_start = x_lod[i - 1]; int x_end = x_lod[i]; int x_seq_len = x_end - x_start; if (x_seq_len == 0) continue; auto dx_sub = dx->Slice(x_start, x_end); dx_sub.Resize(flatten_to_1d(dx_sub.dims())); int dout_end = dout_offset + repeat_num * x_seq_len; auto dout_sub = dout.Slice(dout_offset, dout_end); dout_sub.Resize({repeat_num, dx_sub.dims()[0]}); math::ColwiseSum col_sum; col_sum(context, dout_sub, &dx_sub); dout_offset += repeat_num * x_seq_len; } } } }; template class SequenceExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* g_out = context.Input(framework::GradVarName("Out")); auto* x = context.Input("X"); auto* y = context.Input("Y"); auto* g_x = context.Output(framework::GradVarName("X")); int ref_level = context.Attr("ref_level"); g_x->mutable_data(context.GetPlace()); g_x->set_lod(x->lod()); auto& dev_ctx = context.template device_context(); math::SetConstant set_zero; set_zero(dev_ctx, g_x, static_cast(0)); auto& y_lod = y->lod(); if (ref_level == -1) ref_level = y_lod.size() - 1; // just copy the gradient if (y_lod[ref_level].size() <= 1) { framework::TensorCopy(*g_out, context.GetPlace(), g_x); return; } framework::Vector ref_x_lod; framework::Vector ref_lod = y_lod[ref_level]; if (x->lod().size() == 1) { ref_x_lod = x->lod()[0]; } else { // x_lod doesn't has lod, use fake x lod, level = 0 ref_x_lod.resize(x->dims()[0] + 1); std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0); } SequenceExpandGradFunctor functor; functor(context.template device_context(), *g_out, ref_x_lod, ref_lod, g_x); } }; } // namespace operators } // namespace paddle