conv_transpose_op.cc 31.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
22

J
Jacek Czaja 已提交
23 24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
27 28 29
namespace paddle {
namespace operators {

30 31
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
32
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
33 34 35
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "ConvTranspose");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "ConvTranspose");
  OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "ConvTranspose");
C
chengduoZH 已提交
36 37 38

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
39 40
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
L
LielinJiang 已提交
41 42
  std::vector<int> output_padding =
      ctx->Attrs().Get<std::vector<int>>("output_padding");
C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
47 48
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
49 50
  const std::string data_layout_str =
      ctx->Attrs().Get<std::string>("data_format");
51 52 53
  const DataLayout data_layout =
      this->IsMKLDNNType() ? DataLayout::kNCHW
                           : framework::StringToDataLayout(data_layout_str);
C
chengduoZH 已提交
54

55
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
56 57 58 59 60
                    platform::errors::InvalidArgument(
                        "Input of Op(conv_transpose) should be 4-D or "
                        "5-D Tensor. But received: %u-D Tensor, "
                        "the shape of input is [%s]",
                        in_dims.size(), in_dims));
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63 64 65 66 67 68
      platform::errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69 70 71 72 73 74 75 76 77 78 79 80 81

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;

82 83
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
84 85 86 87 88 89
      platform::errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size, in_dims.size(), in_dims, strides.size()));
90
  if (output_size.size())
91 92
    PADDLE_ENFORCE_EQ(
        output_size.size(), strides.size(),
93 94 95
        platform::errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
L
LielinJiang 已提交
96 97 98 99 100 101
  if (output_padding.size())
    PADDLE_ENFORCE_EQ(
        output_padding.size(), strides.size(),
        platform::errors::InvalidArgument(
            "The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
C
chengduoZH 已提交
102

103
  const int64_t C =
104
      (data_layout != DataLayout::kNHWC ? in_dims[1]
105 106 107
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
108 109 110 111 112 113 114
      platform::errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C, in_dims, filter_dims[0], filter_dims, data_layout_str));
115 116

  framework::DDim in_data_dims;
117
  if (data_layout != DataLayout::kNHWC) {
118 119 120 121 122 123 124 125 126 127 128
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
129
  if (data_layout != DataLayout::kNHWC) {
130 131
    output_shape.push_back(filter_dims[1] * groups);
  }
132
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
133
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
134
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
135 136 137 138 139
    auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
                           ? (in_dims[i + offset] - 1) * strides[i] -
                                 paddings[2 * i] - paddings[2 * i + 1] +
                                 filter_extent
                           : -1;
140
    if (output_size.size()) {
141 142 143 144 145 146 147
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            output_size[i], infer_shape,
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should not be "
                "less than the infered output size. But received output_size = "
                "[%s], whose dim %d is less than the infered output size [%s]",
148
                framework::make_ddim(output_size).to_str(), i, infer_shape));
149 150 151 152 153 154 155
        PADDLE_ENFORCE_LT(
            output_size[i], infer_shape + strides[i],
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should be less "
                "than infered size + stride. But received output_size = [%s], "
                "whose dim %d is not less than the infered output size (%d) + "
                "stride (%d) = %d",
156 157
                framework::make_ddim(output_size).to_str(), i, infer_shape,
                strides[i], infer_shape + strides[i]));
158
      }
159
      output_shape.push_back(output_size[i]);
L
LielinJiang 已提交
160 161 162 163 164 165 166 167
    } else if (output_padding.size()) {
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            output_padding[i], 0,
            platform::errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should not be "
                "less than the 0. But received output_padding = "
                "[%s], whose dim %d is less than 0",
168
                framework::make_ddim(output_padding).to_str(), i));
L
LielinJiang 已提交
169 170 171 172 173 174 175 176
        PADDLE_ENFORCE_LT(
            output_padding[i], std::max(strides[i], dilations[i]),
            platform::errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should be less "
                "than either stride or dilation. But received output_size = "
                "[%s], "
                "whose dim %d is not less than either stride (%d)  or "
                "dilation (%d)",
177
                framework::make_ddim(output_size).to_str(), i, strides[i],
L
LielinJiang 已提交
178 179 180
                dilations[i]));
      }
      output_shape.push_back((infer_shape + output_padding[i]));
181 182 183
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
184
  }
185 186 187
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
188
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
189 190
}

191 192
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
193
  framework::LibraryType library_{framework::LibraryType::kPlain};
194
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
195 196
  bool use_cudnn =
      ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
C
chengduoZH 已提交
197
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
198
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
199
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
200 201 202
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
203 204 205
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
206 207
  }
#endif
J
Jacek Czaja 已提交
208 209
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
210
      this->CanMKLDNNBeUsed(ctx, data_type)) {
J
Jacek Czaja 已提交
211 212
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
213
  }
J
Jacek Czaja 已提交
214
#endif
215

216
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_);
217 218
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(),
          framework::StringToDataLayout(data_format));
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
245
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
246 247 248
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
249 250
      .SetDefault(false)
      .AsExtra();
251 252 253 254 255
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
256 257 258 259 260 261 262 263
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
264 265 266 267
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
268 269
      .AsDispensable()
      .AsExtra();
C
chengduoZH 已提交
270
  AddOutput("Output",
C
chengduoZH 已提交
271
            "(Tensor) The output tensor of convolution transpose operator. "
272
            "The format of output tensor is the same as input tensor.");
L
LielinJiang 已提交
273 274 275 276 277
  AddAttr<std::vector<int>>("output_padding",
                            "(vector<int> default: []), Additional size added "
                            "to one side of each dimension in the output "
                            "shape")
      .SetDefault({});
278 279 280 281
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
282 283 284 285
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
286 287 288 289 290
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
291 292
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
293
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
294
      "convolution transpose operator.")
C
chengduoZH 已提交
295
      .SetDefault({1, 1});
C
chengduoZH 已提交
296 297
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
298
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
299
      "transpose operator.")
C
chengduoZH 已提交
300
      .SetDefault({0, 0});
301 302 303
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
304 305
      .SetDefault(false)
      .AsExtra();
J
Jacek Czaja 已提交
306 307
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
308 309
      .SetDefault(false)
      .AsExtra();
310 311 312
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force BF16 kernel output FP32, only "
                "used in MKL-DNN BF16")
313 314
      .SetDefault(false)
      .AsExtra();
315 316 317 318
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
319 320
      .InEnum({"float32", "bfloat16"})
      .AsExtra();
J
Jacek Czaja 已提交
321
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
322 323
      .SetDefault(false)
      .AsExtra();
324 325
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
326 327
      .SetDefault("")
      .AsExtra();
328 329
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
330 331
      .SetDefault(0.0f)
      .AsExtra();
332
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
333 334
      .SetDefault(0.0f)
      .AsExtra();
335 336 337 338
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
339 340 341 342 343 344 345 346 347
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
348 349 350 351 352
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
353
               "better hardward. This size should be carefully set.")
354 355
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
C
chengduoZH 已提交
356
  AddComment(R"DOC(
C
chengduoZH 已提交
357 358
Convolution2D Transpose Operator.

C
chengduoZH 已提交
359
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
360
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
361
parameters is checked in the infer-shape.
362
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
363 364 365 366 367 368
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
369
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
370

Y
update  
yi.wu 已提交
371
For an example:
C
chengduoZH 已提交
372
  Input:
C
chengduoZH 已提交
373 374
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
375
  Output:
C
chengduoZH 已提交
376 377 378
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
379 380
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
381
  $$
C
chengduoZH 已提交
382 383 384
)DOC");
}

Y
Yu Yang 已提交
385
void Conv3DTransposeOpMaker::Make() {
386 387 388 389 390 391
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
392 393
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
394 395 396
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
397 398
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
399
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
400
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
401 402
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
403
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
404
            "Where N is batch size, C is "
C
chengduoZH 已提交
405 406
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
L
LielinJiang 已提交
407 408 409 410 411
  AddAttr<std::vector<int>>("output_padding",
                            "(vector<int> default: []), Additional size added "
                            "to one side of each dimension in the output "
                            "shape")
      .SetDefault({});
412 413 414 415
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
416 417 418 419 420 421
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
422
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
423
                            "(vector<int> default:{1, 1, 1}), the "
424
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
425
                            "convolution transpose operator.")
C
chengduoZH 已提交
426
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
427
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
428
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
429
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
430
      .SetDefault({0, 0, 0});
431 432 433 434
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
435 436 437
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
438 439
      .SetDefault(false)
      .AsExtra();
440 441
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
442 443
      .SetDefault(false)
      .AsExtra();
444 445 446 447
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
448 449 450 451 452 453 454 455 456
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
457 458 459 460 461
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
462
               "better hardward. This size should be carefully set.")
463 464
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
C
chengduoZH 已提交
465
  AddComment(R"DOC(
C
chengduoZH 已提交
466 467
Convolution3D Transpose Operator.

C
chengduoZH 已提交
468
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
469
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
470
parameters is checked in the infer-shape.
471
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
472 473 474 475 476 477 478
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
479
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
480

481
Example:
C
chengduoZH 已提交
482
  Input:
C
chengduoZH 已提交
483 484
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
485
  Output:
C
chengduoZH 已提交
486 487 488
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
489 490 491
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
492
  $$
C
chengduoZH 已提交
493 494 495
)DOC");
}

C
chengduoZH 已提交
496
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
497 498 499 500 501 502 503 504 505 506
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

507 508
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
509 510
  bool use_cudnn =
      ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
511
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
512
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
513 514 515 516 517
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
518 519 520 521 522 523 524
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

525
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
526 527 528
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
529 530
}

H
hong 已提交
531 532
template <typename T>
class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
533
 public:
H
hong 已提交
534
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
535 536

 protected:
537
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
538 539 540 541 542 543 544 545
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
546
    }
H
hong 已提交
547 548
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
549 550 551
  }
};

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
template <typename T>
class ConvTransposeDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));

    op->SetOutput("DDOutput",
                  ddx.empty()
                      ? this->EmptyInputGrad()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));

    op->SetAttrMap(this->Attrs());
  }
};

void ConvTransposeOpDoubleGrad::InferShape(
    framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
    ctx->SetOutputDim("DDOutput", do_dims);
  }
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
    ctx->SetOutputDim("DFilter", w_dims);
  }
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvTransposeOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
610 611
  bool use_cudnn =
      ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
612
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
613
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
632 633 634 635
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
636

637
// conv2d_transpose
Y
Yang Yang 已提交
638 639
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
640 641
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
642 643 644 645 646
REGISTER_OPERATOR(
    conv2d_transpose_grad, ops::ConvTransposeOpGrad,
    ops::ConvTransposeDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ConvTransposeDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_transpose_grad_grad, ops::ConvTransposeOpDoubleGrad);
C
chengduoZH 已提交
647 648

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
649
    conv2d_transpose,
Q
QI JUN 已提交
650 651
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
652
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
653
    conv2d_transpose_grad,
Q
QI JUN 已提交
654 655 656
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
657

658
// conv3d_transpose
Y
Yang Yang 已提交
659 660
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
H
hong 已提交
661 662
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
663
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
664 665

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
666
    conv3d_transpose,
Q
QI JUN 已提交
667 668
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
669
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
670
    conv3d_transpose_grad,
Q
QI JUN 已提交
671 672 673
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
674 675 676 677

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
678 679
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
680 681 682 683 684 685 686 687 688 689 690
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
691 692 693 694 695 696 697 698 699 700

REGISTER_OP_VERSION(conv_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade convtranspose add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
701
            std::vector<int>{}));
702 703 704 705 706 707 708 709 710 711

REGISTER_OP_VERSION(conv2d_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d transpose to add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
712 713 714 715 716 717 718 719 720 721 722
            std::vector<int>{}))
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d transpose to add a new attributes [force_fp32_output, mkldnn_data_type].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("force_fp32_output",
                     "Force BF16 kernel output FP32, only used in MKL-DNN BF16",
                     false)
            .NewAttr("mkldnn_data_type", "Data type of mkldnn kernel",
                     "float32"));
723 724 725 726 727 728 729 730 731 732

REGISTER_OP_VERSION(conv3d_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d transpose to add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
733
            std::vector<int>{}));
734 735 736 737 738 739 740 741 742 743

REGISTER_OP_VERSION(depthwise_conv2d_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise conv2d transpose to add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
744
            std::vector<int>{}));