conv_transpose_op.cc 18.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
20

J
Jacek Czaja 已提交
21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
25 26 27
namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
29
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
30
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
32
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
34
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
35 36 37

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
38 39
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
40 41
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
42
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
43
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44

C
chengduoZH 已提交
45 46 47 48 49 50 51 52
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
53 54 55 56
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
57
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
58
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
59
                    "dimension should be the same.");
C
chengduoZH 已提交
60 61 62
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
63
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
64
                    "In ConvTransposeOp, The number of input channels should "
65
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
66

Y
Yibing Liu 已提交
67
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
68
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
69
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
70 71 72 73 74 75 76 77 78 79 80
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
81
  }
C
chengduoZH 已提交
82
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
83 84
}

85 86
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
87 88 89
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
90
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
91
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
92 93 94 95
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
96 97 98
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
99 100
  }
#endif
J
Jacek Czaja 已提交
101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
106
  }
J
Jacek Czaja 已提交
107
#endif
108

Y
Yu Yang 已提交
109 110
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
111 112
}

Y
Yu Yang 已提交
113
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
114 115 116 117
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
118 119 120 121
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
122 123
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
124 125 126 127 128 129 130 131
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
132 133 134 135 136 137
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
138
  AddOutput("Output",
C
chengduoZH 已提交
139
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
140
            "The format of output tensor is also NCHW.");
141 142 143 144
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
145 146 147 148
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
149 150 151 152 153
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
154 155
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
156
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
157
      "convolution transpose operator.")
C
chengduoZH 已提交
158
      .SetDefault({1, 1});
C
chengduoZH 已提交
159 160
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
161
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
162
      "transpose operator.")
C
chengduoZH 已提交
163
      .SetDefault({0, 0});
164 165 166 167
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
168 169 170 171 172
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
173 174 175 176 177 178 179 180
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
181 182 183 184 185 186 187 188 189 190 191 192 193 194
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
195
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
C
chengduoZH 已提交
196
  AddComment(R"DOC(
C
chengduoZH 已提交
197 198
Convolution2D Transpose Operator.

C
chengduoZH 已提交
199
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
200
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
201
parameters is checked in the infer-shape.
C
chengduoZH 已提交
202 203 204 205 206 207 208
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
209
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
210

Y
update  
yi.wu 已提交
211
For an example:
C
chengduoZH 已提交
212
  Input:
C
chengduoZH 已提交
213 214
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
215
  Output:
C
chengduoZH 已提交
216 217 218
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
219 220
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
221
  $$
C
chengduoZH 已提交
222 223 224
)DOC");
}

Y
Yu Yang 已提交
225
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
226 227 228 229 230 231
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
232 233
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
234 235 236
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
237 238
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
239
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
240
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
241 242 243 244
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
245 246
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
247 248 249 250
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
251 252 253 254 255 256
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
257
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
258
                            "(vector<int> default:{1, 1, 1}), the "
259
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
260
                            "convolution transpose operator.")
C
chengduoZH 已提交
261
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
262
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
263
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
264
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
265
      .SetDefault({0, 0, 0});
266 267 268 269
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
270 271 272 273
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
274 275 276
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
277 278 279 280 281 282 283 284 285 286 287 288 289 290
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
291
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
C
chengduoZH 已提交
292
  AddComment(R"DOC(
C
chengduoZH 已提交
293 294
Convolution3D Transpose Operator.

C
chengduoZH 已提交
295
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
296
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
297
parameters is checked in the infer-shape.
C
chengduoZH 已提交
298 299 300 301 302 303 304 305
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
306
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
307

308
Example:
C
chengduoZH 已提交
309
  Input:
C
chengduoZH 已提交
310 311
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
312
  Output:
C
chengduoZH 已提交
313 314 315
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
316 317 318
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
319
  $$
C
chengduoZH 已提交
320 321 322
)DOC");
}

C
chengduoZH 已提交
323
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
324 325 326 327 328 329 330 331 332 333
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

334 335 336
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
337
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
338 339 340 341 342 343
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
344 345 346 347 348 349 350 351 352
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
Y
Yu Yang 已提交
353 354
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
355 356
}

S
sneaxiy 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
class ConvTransposeGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    if (ForwardOp().Inputs().count("Bias") > 0) {
      op->SetInput("Bias", Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    }
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

C
chengduoZH 已提交
379 380 381 382
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
383

384
// conv2d_transpose
Y
Yang Yang 已提交
385 386
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
387
                  ops::ConvTransposeGradOpDescMaker);
388
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
389 390

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
391
    conv2d_transpose,
Q
QI JUN 已提交
392 393
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
394
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
395
    conv2d_transpose_grad,
Q
QI JUN 已提交
396 397 398
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
399

400
// conv3d_transpose
Y
Yang Yang 已提交
401 402
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
S
sneaxiy 已提交
403
                  ops::ConvTransposeGradOpDescMaker);
404
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
405 406

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
407
    conv3d_transpose,
Q
QI JUN 已提交
408 409
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
410
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
411
    conv3d_transpose_grad,
Q
QI JUN 已提交
412 413 414
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
415 416 417 418

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
419
                  ops::ConvTransposeGradOpDescMaker);
420 421 422 423 424 425 426 427 428 429 430
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);