prepared_operator.h 20.8 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/framework/operator.h"
25 26
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/fluid/framework/type_defs.h"
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28 29
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/imperative/var_helper.h"
J
Jiabin Yang 已提交
31

32 33 34
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/selected_rows.h"

35 36
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
37 38 39 40 41
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

42 43 44 45 46 47 48 49
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
50
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
51 52 53 54 55 56 57 58 59 60 61 62 63
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
64 65 66 67 68 69 70 71
template <>
void SetForwardDataTypeOfGradVar<egr::EagerTensor>(
    const std::shared_ptr<egr::EagerTensor>& var) {
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
72

73
template <typename VarType>
74
std::shared_ptr<NameVarMap<VarType>> PrepareData(
75 76
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
77 78 79
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
80 81 82
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
83 84 85 86 87 88
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
89 90 91
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
92

J
Jiabin Yang 已提交
93
          if (CheckCachedKey(template_var, expected_kernel_key)) {
94 95 96
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
97
                GetCachedValue(template_var, expected_kernel_key);
98 99 100
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
101 102

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
103 104 105
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
106 107
            SetTensorToVariable(cache_var->Var(), *tensor,
                                tmp_var->MutableVar());
108 109
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
110 111 112 113 114 115 116 117 118 119 120
            framework::Tensor out;
            TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                          &out);
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
121 122 123 124 125
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
              SetTensorToVariable(template_var->Var(), out,
                                  tmp_var->MutableVar());
126
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
127
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
128 129 130 131 132 133
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
J
Jiabin Yang 已提交
134 135
              SetTensorToVariable(template_var->Var(), out,
                                  template_var->MutableVar());
136
            }
137
          }
138 139 140 141
        }
      }
    }
  }
142
  return tmp_ins_ptr;
143 144
}

J
Jiabin Yang 已提交
145 146
class PreparedOp {
 public:
147 148
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
149
             const framework::OpKernelType& kernel_type,
150
             const framework::OperatorWithKernel::OpKernelFunc& func,
151
             platform::DeviceContext* dev_ctx);
152

153 154 155 156
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
             const framework::KernelSignature& kernel_signature,
157
             const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx);
158

159 160 161 162
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
163
                            const framework::AttributeMap& attrs,
164
                            const framework::AttributeMap& default_attrs);
165 166 167 168 169

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
170
                            const framework::AttributeMap& attrs,
171
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
172

J
Jiabin Yang 已提交
173 174 175 176 177 178 179
  static PreparedOp Prepare(const NameVarMap<egr::EagerTensor>& ins,
                            const NameVarMap<egr::EagerTensor>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

180
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
181 182
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
183 184 185

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
186 187
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
188

J
Jiabin Yang 已提交
189 190 191 192 193
  void Run(const NameVarMap<egr::EagerTensor>& ins,
           const NameVarMap<egr::EagerTensor>& outs,
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

194 195
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
196 197 198
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
199
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
200 201
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
202 203 204 205
  // NOTE(chenweihang): Similar op members are used to adapt to
  // new pten kernel, if there is a better design in the future,
  // we may polish the implementation here
  bool run_pten_kernel_{false};
L
Liu-xiandong 已提交
206
  bool run_kp_kernel_{false};
207 208
  framework::KernelSignature pt_kernel_signature_;
  pten::Kernel pt_kernel_;
J
Jiabin Yang 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
const inline framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

template <typename VarType>
void BuildDygraphPtenKernelContext(
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
  kernel_ctx->SetDeviceContext(dev_ctx);

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
262
    auto it = ins.find(input_names[i]);
263 264 265

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

H
hong 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    if ((it == ins.end()) &&
        (input_defs[i].type_index ==
         std::type_index(typeid(paddle::optional<const pten::DenseTensor&>)))) {
      kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
    } else {
      auto ins_vector = it->second;
      size_t end_idx = start_idx + ins_vector.size();

      for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
        const pten::TensorBase* tensor_in = nullptr;
        auto& var = ins_vector[offset]->Var();
        if (var.template IsType<pten::DenseTensor>()) {
          tensor_in = &(var.template Get<pten::DenseTensor>());
        } else if (var.template IsType<pten::SelectedRows>()) {
          tensor_in = &(var.template Get<pten::SelectedRows>());
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported input `%s` type when call pt kernel.",
              framework::ToTypeName(var.Type())));
        }
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
289
      }
H
hong 已提交
290
      kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    }
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
313 314

      pten::TensorBase* tensor_out = nullptr;
315
      auto* var = outs_vector[offset]->MutableVar();
316 317 318 319
      if (var->template IsType<pten::DenseTensor>()) {
        tensor_out = var->template GetMutable<pten::DenseTensor>();
      } else if (var->template IsType<pten::SelectedRows>()) {
        tensor_out = var->template GetMutable<pten::SelectedRows>();
320 321 322 323
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
324
      }
325

326 327
      experimental::ResetTensorDtypeAndLayoutByArgDef(tensor_out,
                                                      output_defs.at(i));
328
      framework::SetAllocationForOutputTenosr(
329
          tensor_out, pten::TransToPtenPlace(output_defs.at(i).backend));
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

      kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
H
hong 已提交
349 350 351 352
        } else if (attr_defs[i].type_index ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          kernel_ctx->EmplaceBackAttr(vector_int_attr);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var())));
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(variables)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(ins_vector[0]->Var())));
      }

    } else {
      // TODO(chenweihang): support other attrs later
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
P
phlrain 已提交
415
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
P
phlrain 已提交
416
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
H
hong 已提交
417 418 419
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

template <typename VarType>
void PreparePtenData(const pten::Kernel& pt_kernel,
                     const framework::KernelSignature& pt_kernel_signature,
                     const NameVarMap<VarType>& ins) {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& input_defs = pt_kernel.args_def().input_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
H
hong 已提交
462 463 464 465
    auto it = ins.find(input_names[i]);
    if (it == ins.end()) {
      continue;
    }
466 467 468
    auto& ins_vector = ins.at(input_names[i]);

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
J
Jiabin Yang 已提交
469 470
      auto var = ins_vector[offset];
      const auto* tensor_in = GetTensorFromVar(var->Var());
471
      if (tensor_in && tensor_in->IsInitialized()) {
472
        auto expected_place = pten::TransToPtenPlace(in_def.backend);
473 474 475 476 477 478 479 480 481 482
        if (platform::is_same_place(tensor_in->place(), expected_place)) {
          continue;
        }

        VLOG(3) << "Pten Transform Variable " << input_names[i] << " from "
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
483
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
484 485 486 487 488
      }
    }
  }
}

J
Jiabin Yang 已提交
489 490
}  // namespace imperative
}  // namespace paddle