Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b8f7edc3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b8f7edc3
编写于
2月 14, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix format error; test=develop
上级
5076ad87
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
175 addition
and
145 deletion
+175
-145
paddle/fluid/imperative/prepared_operator.h
paddle/fluid/imperative/prepared_operator.h
+1
-1
paddle/fluid/operators/histogram_op.cc
paddle/fluid/operators/histogram_op.cc
+2
-7
paddle/pten/kernels/cpu/histogram_kernel.cc
paddle/pten/kernels/cpu/histogram_kernel.cc
+62
-51
paddle/pten/kernels/gpu/histogram_kernel.cu
paddle/pten/kernels/gpu/histogram_kernel.cu
+95
-81
paddle/pten/ops/compat/histogram_sig.cc
paddle/pten/ops/compat/histogram_sig.cc
+15
-5
未找到文件。
paddle/fluid/imperative/prepared_operator.h
浏览文件 @
b8f7edc3
...
...
@@ -412,7 +412,7 @@ void BuildDygraphPtenKernelContext(
kernel_ctx
->
EmplaceBackAttr
(
BOOST_GET_CONST
(
float
,
attr
));
}
else
if
(
attr_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
bool
)))
{
kernel_ctx
->
EmplaceBackAttr
(
BOOST_GET_CONST
(
bool
,
attr
));
}
else
if
(
attr_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
int64_t
)))
{
}
else
if
(
attr_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
int64_t
)))
{
kernel_ctx
->
EmplaceBackAttr
(
BOOST_GET_CONST
(
int64_t
,
attr
));
}
else
if
(
attr_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
std
::
string
)))
{
...
...
paddle/fluid/operators/histogram_op.cc
浏览文件 @
b8f7edc3
...
...
@@ -12,12 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -85,8 +85,3 @@ REGISTER_OPERATOR(
histogram
,
ops
::
HistogramOp
,
ops
::
HistogramOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
// REGISTER_OP_CPU_KERNEL(
// histogram, ops::HistogramKernel<paddle::platform::CPUDeviceContext, float>,
// ops::HistogramKernel<paddle::platform::CPUDeviceContext, double>,
// ops::HistogramKernel<paddle::platform::CPUDeviceContext, int>,
// ops::HistogramKernel<paddle::platform::CPUDeviceContext, int64_t>);
paddle/pten/kernels/cpu/histogram_kernel.cc
浏览文件 @
b8f7edc3
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/histogram_kernel.h"
#include "paddle/pten/kernels/funcs/math_function.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/math_function.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
HistogramKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
int64_t
bins
,
int
min
,
int
max
,
DenseTensor
*
output
)
{
auto
&
nbins
=
bins
;
auto
&
minval
=
min
;
auto
&
maxval
=
max
;
const
DenseTensor
&
input
,
int64_t
bins
,
int
min
,
int
max
,
DenseTensor
*
output
)
{
auto
&
nbins
=
bins
;
auto
&
minval
=
min
;
auto
&
maxval
=
max
;
const
T
*
input_data
=
input
.
data
<
T
>
();
auto
input_numel
=
input
.
numel
();
const
T
*
input_data
=
input
.
data
<
T
>
();
auto
input_numel
=
input
.
numel
();
int64_t
*
out_data
=
output
->
mutable_data
<
int64_t
>
(
dev_ctx
.
GetPlace
());
pten
::
funcs
::
SetConstant
<
Context
,
int64_t
>
()(
dev_ctx
,
output
,
static_cast
<
int64_t
>
(
0
));
int64_t
*
out_data
=
output
->
mutable_data
<
int64_t
>
(
dev_ctx
.
GetPlace
());
pten
::
funcs
::
SetConstant
<
Context
,
int64_t
>
()(
dev_ctx
,
output
,
static_cast
<
int64_t
>
(
0
));
if
(
input_data
==
nullptr
)
return
;
if
(
input_data
==
nullptr
)
return
;
T
output_min
=
static_cast
<
T
>
(
minval
);
T
output_max
=
static_cast
<
T
>
(
maxval
);
if
(
output_min
==
output_max
)
{
output_min
=
*
std
::
min_element
(
input_data
,
input_data
+
input_numel
);
output_max
=
*
std
::
max_element
(
input_data
,
input_data
+
input_numel
);
}
if
(
output_min
==
output_max
)
{
output_min
=
output_min
-
1
;
output_max
=
output_max
+
1
;
}
T
output_min
=
static_cast
<
T
>
(
minval
);
T
output_max
=
static_cast
<
T
>
(
maxval
);
if
(
output_min
==
output_max
)
{
output_min
=
*
std
::
min_element
(
input_data
,
input_data
+
input_numel
);
output_max
=
*
std
::
max_element
(
input_data
,
input_data
+
input_numel
);
}
if
(
output_min
==
output_max
)
{
output_min
=
output_min
-
1
;
output_max
=
output_max
+
1
;
}
PADDLE_ENFORCE_EQ
(
(
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))
||
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))),
false
,
pten
::
errors
::
OutOfRange
(
"range of min, max is not finite"
));
PADDLE_ENFORCE_GE
(
output_max
,
output_min
,
pten
::
errors
::
InvalidArgument
(
"max must be larger or equal to min. If min and max are both zero, "
"the minimum and maximum values of the data are used. "
"But received max is %d, min is %d"
,
maxval
,
minval
));
PADDLE_ENFORCE_EQ
(
(
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))
||
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))),
false
,
pten
::
errors
::
OutOfRange
(
"range of min, max is not finite"
));
PADDLE_ENFORCE_GE
(
output_max
,
output_min
,
pten
::
errors
::
InvalidArgument
(
"max must be larger or equal to min. If min and max are both zero, "
"the minimum and maximum values of the data are used. "
"But received max is %d, min is %d"
,
maxval
,
minval
));
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
if
(
input_data
[
i
]
>=
output_min
&&
input_data
[
i
]
<=
output_max
)
{
const
int64_t
bin
=
(
int64_t
)((
input_data
[
i
]
-
output_min
)
*
nbins
/
(
output_max
-
output_min
));
out_data
[
std
::
min
(
bin
,
nbins
-
1
)]
+=
1
;
}
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
if
(
input_data
[
i
]
>=
output_min
&&
input_data
[
i
]
<=
output_max
)
{
const
int64_t
bin
=
(
int64_t
)((
input_data
[
i
]
-
output_min
)
*
nbins
/
(
output_max
-
output_min
));
out_data
[
std
::
min
(
bin
,
nbins
-
1
)]
+=
1
;
}
}
}
}
// namspace pten
}
// namespace pten
PT_REGISTER_KERNEL
(
histogram
,
CPU
,
...
...
@@ -74,4 +85,4 @@ PT_REGISTER_KERNEL(histogram,
float
,
double
,
int
,
int64_t
)
{}
\ No newline at end of file
int64_t
)
{}
paddle/pten/kernels/gpu/histogram_kernel.cu
浏览文件 @
b8f7edc3
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/histogram_kernel.h"
#include "paddle/pten/kernels/funcs/math_function.h"
#include "paddle/pten/kernels/histogram_kernel.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
...
...
@@ -9,8 +21,8 @@
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/pten/kernels/funcs/eigen/eigen_function.h"
#include "paddle/pten/kernels/funcs/eigen/common.h"
#include "paddle/pten/kernels/funcs/eigen/eigen_function.h"
namespace
pten
{
...
...
@@ -22,7 +34,9 @@ inline int GET_BLOCKS(const int N) {
}
template
<
typename
T
,
typename
IndexType
>
__device__
static
IndexType
GetBin
(
T
input_value
,
T
min_value
,
T
max_value
,
__device__
static
IndexType
GetBin
(
T
input_value
,
T
min_value
,
T
max_value
,
int64_t
nbins
)
{
IndexType
bin
=
static_cast
<
int
>
((
input_value
-
min_value
)
*
nbins
/
(
max_value
-
min_value
));
...
...
@@ -31,9 +45,12 @@ __device__ static IndexType GetBin(T input_value, T min_value, T max_value,
}
template
<
typename
T
,
typename
IndexType
>
__global__
void
KernelHistogram
(
const
T
*
input
,
const
int
total_elements
,
const
int64_t
nbins
,
const
T
min_value
,
const
T
max_value
,
int64_t
*
output
)
{
__global__
void
KernelHistogram
(
const
T
*
input
,
const
int
total_elements
,
const
int64_t
nbins
,
const
T
min_value
,
const
T
max_value
,
int64_t
*
output
)
{
extern
__shared__
int64_t
buf_hist
[];
for
(
int
i
=
threadIdx
.
x
;
i
<
nbins
;
i
+=
blockDim
.
x
)
{
buf_hist
[
i
]
=
0
;
...
...
@@ -58,83 +75,80 @@ __global__ void KernelHistogram(const T* input, const int total_elements,
template
<
typename
T
,
typename
Context
>
void
HistogramKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
int64_t
bins
,
int
min
,
int
max
,
DenseTensor
*
output
)
{
auto
&
nbins
=
bins
;
auto
&
minval
=
min
;
auto
&
maxval
=
max
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
int
input_numel
=
input
.
numel
();
int64_t
*
out_data
=
output
->
mutable_data
<
int64_t
>
(
dev_ctx
.
GetPlace
());
pten
::
funcs
::
SetConstant
<
Context
,
int64_t
>
()(
dev_ctx
,
output
,
static_cast
<
int64_t
>
(
0
));
if
(
input_data
==
nullptr
)
return
;
T
output_min
=
static_cast
<
T
>
(
minval
);
T
output_max
=
static_cast
<
T
>
(
maxval
);
if
(
output_min
==
output_max
)
{
auto
input_x
=
pten
::
EigenVector
<
T
>::
Flatten
(
input
);
DenseTensor
input_min_t
,
input_max_t
;
auto
*
input_min_data
=
input_min_t
.
mutable_data
<
T
>
({
1
},
dev_ctx
.
GetPlace
());
auto
*
input_max_data
=
input_max_t
.
mutable_data
<
T
>
({
1
},
dev_ctx
.
GetPlace
());
auto
input_min_scala
=
pten
::
EigenScalar
<
T
>::
From
(
input_min_t
);
auto
input_max_scala
=
pten
::
EigenScalar
<
T
>::
From
(
input_max_t
);
auto
*
place
=
dev_ctx
.
eigen_device
();
input_min_scala
.
device
(
*
place
)
=
input_x
.
minimum
();
input_max_scala
.
device
(
*
place
)
=
input_x
.
maximum
();
DenseTensor
input_min_cpu
,
input_max_cpu
;
paddle
::
framework
::
TensorCopySync
(
input_min_t
,
paddle
::
platform
::
CPUPlace
(),
&
input_min_cpu
);
paddle
::
framework
::
TensorCopySync
(
input_max_t
,
paddle
::
platform
::
CPUPlace
(),
&
input_max_cpu
);
output_min
=
input_min_cpu
.
data
<
T
>
()[
0
];
output_max
=
input_max_cpu
.
data
<
T
>
()[
0
];
}
if
(
output_min
==
output_max
)
{
output_min
=
output_min
-
1
;
output_max
=
output_max
+
1
;
}
const
DenseTensor
&
input
,
int64_t
bins
,
int
min
,
int
max
,
DenseTensor
*
output
)
{
auto
&
nbins
=
bins
;
auto
&
minval
=
min
;
auto
&
maxval
=
max
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
int
input_numel
=
input
.
numel
();
int64_t
*
out_data
=
output
->
mutable_data
<
int64_t
>
(
dev_ctx
.
GetPlace
());
pten
::
funcs
::
SetConstant
<
Context
,
int64_t
>
()(
dev_ctx
,
output
,
static_cast
<
int64_t
>
(
0
));
if
(
input_data
==
nullptr
)
return
;
T
output_min
=
static_cast
<
T
>
(
minval
);
T
output_max
=
static_cast
<
T
>
(
maxval
);
if
(
output_min
==
output_max
)
{
auto
input_x
=
pten
::
EigenVector
<
T
>::
Flatten
(
input
);
DenseTensor
input_min_t
,
input_max_t
;
auto
*
input_min_data
=
input_min_t
.
mutable_data
<
T
>
({
1
},
dev_ctx
.
GetPlace
());
auto
*
input_max_data
=
input_max_t
.
mutable_data
<
T
>
({
1
},
dev_ctx
.
GetPlace
());
auto
input_min_scala
=
pten
::
EigenScalar
<
T
>::
From
(
input_min_t
);
auto
input_max_scala
=
pten
::
EigenScalar
<
T
>::
From
(
input_max_t
);
auto
*
place
=
dev_ctx
.
eigen_device
();
input_min_scala
.
device
(
*
place
)
=
input_x
.
minimum
();
input_max_scala
.
device
(
*
place
)
=
input_x
.
maximum
();
DenseTensor
input_min_cpu
,
input_max_cpu
;
paddle
::
framework
::
TensorCopySync
(
input_min_t
,
paddle
::
platform
::
CPUPlace
(),
&
input_min_cpu
);
paddle
::
framework
::
TensorCopySync
(
input_max_t
,
paddle
::
platform
::
CPUPlace
(),
&
input_max_cpu
);
output_min
=
input_min_cpu
.
data
<
T
>
()[
0
];
output_max
=
input_max_cpu
.
data
<
T
>
()[
0
];
}
if
(
output_min
==
output_max
)
{
output_min
=
output_min
-
1
;
output_max
=
output_max
+
1
;
}
PADDLE_ENFORCE_EQ
(
(
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))
||
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))),
false
,
pten
::
errors
::
OutOfRange
(
"range of min, max is not finite"
));
PADDLE_ENFORCE_GE
(
output_max
,
output_min
,
pten
::
errors
::
InvalidArgument
(
"max must be larger or equal to min. If min and max are both zero, "
"the minimum and maximum values of the data are used. "
"But received max is %d, min is %d"
,
maxval
,
minval
));
auto
stream
=
dev_ctx
.
stream
();
KernelHistogram
<
T
,
IndexType
><<<
GET_BLOCKS
(
input_numel
),
PADDLE_CUDA_NUM_THREADS
,
nbins
*
sizeof
(
int64_t
),
stream
>>>
(
input_data
,
input_numel
,
nbins
,
output_min
,
output_max
,
out_data
);
PADDLE_ENFORCE_EQ
(
(
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))
||
std
::
isinf
(
static_cast
<
float
>
(
output_min
))
||
std
::
isnan
(
static_cast
<
float
>
(
output_max
))),
false
,
pten
::
errors
::
OutOfRange
(
"range of min, max is not finite"
));
PADDLE_ENFORCE_GE
(
output_max
,
output_min
,
pten
::
errors
::
InvalidArgument
(
"max must be larger or equal to min. If min and max are both zero, "
"the minimum and maximum values of the data are used. "
"But received max is %d, min is %d"
,
maxval
,
minval
));
auto
stream
=
dev_ctx
.
stream
();
KernelHistogram
<
T
,
IndexType
><<<
GET_BLOCKS
(
input_numel
),
PADDLE_CUDA_NUM_THREADS
,
nbins
*
sizeof
(
int64_t
),
stream
>>>
(
input_data
,
input_numel
,
nbins
,
output_min
,
output_max
,
out_data
);
}
}
//namespace pten
}
// namespace pten
PT_REGISTER_KERNEL
(
histogram
,
GPU
,
...
...
paddle/pten/ops/compat/histogram_sig.cc
浏览文件 @
b8f7edc3
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/core/compat/op_utils.h"
namespace
pten
{
KernelSignature
HistogramOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"histogram"
,
{
"X"
},
{
"bins"
,
"min"
,
"max"
},
{
"Out"
});
return
KernelSignature
(
"histogram"
,
{
"X"
},
{
"bins"
,
"min"
,
"max"
},
{
"Out"
});
}
}
// namespace pten
PT_REGISTER_ARG_MAPPING_FN
(
histogram
,
pten
::
HistogramOpArgumentMapping
);
\ No newline at end of file
PT_REGISTER_ARG_MAPPING_FN
(
histogram
,
pten
::
HistogramOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录