smooth_l1_loss_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
X
xuezhong 已提交
16
#include <memory>
Y
yangyaming 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
26 27
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
28 29 30

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
X
xuezhong 已提交
31 32 33 34 35 36 37 38
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims);
    }
Q
Qiao Longfei 已提交
39
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
40
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
41 42 43 44
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
X
xuezhong 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
      auto dims = ctx->GetInputDim("InsideWeight");
      bool check = true;
      if ((!ctx->IsRuntime()) &&
          (framework::product(dims) <= 0 || framework::product(x_dims) <= 0)) {
        check = false;
      }
      if (check) {
        PADDLE_ENFORCE_EQ(dims, x_dims);
      }

      dims = ctx->GetInputDim("OutsideWeight");
      check = true;
      if ((!ctx->IsRuntime()) &&
          (framework::product(dims) <= 0 || framework::product(x_dims) <= 0)) {
        check = false;
      }
      if (check) {
        PADDLE_ENFORCE_EQ(dims, x_dims);
      }
Y
yangyaming 已提交
64 65
    }

Q
Qiao Longfei 已提交
66
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
67
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
68
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
69 70 71 72 73
  }
};

class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
Y
yangyaming 已提交
75
    AddInput("X",
Y
yangyaming 已提交
76 77 78
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
79
    AddInput("Y",
Y
yangyaming 已提交
80 81
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
82
    AddInput("InsideWeight",
Y
yangyaming 已提交
83 84 85
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
86 87
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
88
    AddInput("OutsideWeight",
Y
yangyaming 已提交
89 90 91 92
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
93
        .AsDispensable();
Y
yangyaming 已提交
94
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
95
        .AsIntermediate();
Y
yangyaming 已提交
96 97 98
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
99 100 101 102
    AddAttr<float>("sigma",
                   "Hyper parameter of smooth l1 loss op."
                   "A float scalar with default value 3.0.")
        .SetDefault(1.0);
Y
yangyaming 已提交
103
    AddComment(R"DOC(
104 105
Smooth L1 Loss Operator.

Y
yangyaming 已提交
106 107
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
108
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
109
and then sums all the losses. So the shape of Out is [batch_size, 1].
110

Y
yangyaming 已提交
111
The equation is:
Y
yangyaming 已提交
112 113 114 115 116 117 118 119 120 121 122
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
123

Y
yangyaming 已提交
124 125 126 127 128 129 130 131
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

132
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qingqing01 已提交
133
    auto in_dims = ctx->GetInputDim("Diff");
Q
Qiao Longfei 已提交
134
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
135

136
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
137
                      "The tensor rank of Input(Out@Grad) should be 2.");
138 139 140 141 142 143 144
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
                        "The 1st dimension of Input(Out@Grad) must be "
                        "same as input.");
      PADDLE_ENFORCE_EQ(out_dims[1], 1,
                        "The 2nd dimension of Input(Out@Grad) must be 1.");
    }
Y
yangyaming 已提交
145

Q
Qiao Longfei 已提交
146 147 148 149 150 151 152 153
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
154 155 156
  }
};

Q
qingqing01 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("smooth_l1_loss_grad");
    op->SetInput("InsideWeight", Input("InsideWeight"));
    op->SetInput("OutsideWeight", Input("OutsideWeight"));
    op->SetInput("Diff", Output("Diff"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Y
yangyaming 已提交
178 179 180 181
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
182
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
Q
qingqing01 已提交
183
                  ops::SmoothL1LossGradMaker);
184
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
185
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
186 187
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
188 189
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
190
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);