smooth_l1_loss_op.cc 5.5 KB
Newer Older
Y
yangyaming 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14 15 16 17 18 19 20 21 22 23

#include "paddle/operators/smooth_l1_loss_op.h"

namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
27 28 29

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
30
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
32
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
33 34 35 36
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
Y
yangyaming 已提交
37 38
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims);
Y
yangyaming 已提交
39 40
    }

Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
42
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
43
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
44 45 46 47 48 49
  }
};

template <typename AttrType>
class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
50
  SmoothL1LossOpMaker(OpProto* proto, OpAttrChecker* op_checker)
Y
yangyaming 已提交
51
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
yangyaming 已提交
52
    AddInput("X",
Y
yangyaming 已提交
53 54 55
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
56
    AddInput("Y",
Y
yangyaming 已提交
57 58
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
59
    AddInput("InsideWeight",
Y
yangyaming 已提交
60 61 62
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
63 64
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
65
    AddInput("OutsideWeight",
Y
yangyaming 已提交
66 67 68 69
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
70
        .AsDispensable();
Y
yangyaming 已提交
71
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
72
        .AsIntermediate();
Y
yangyaming 已提交
73 74 75
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
Y
yangyaming 已提交
76 77 78
    AddAttr<AttrType>("sigma",
                      "Hyper parameter of smooth l1 loss op."
                      "A float scalar with default value 3.0.")
Y
yangyaming 已提交
79
        .SetDefault(3.0);
Y
yangyaming 已提交
80
    AddComment(R"DOC(
81 82
Smooth L1 Loss Operator.

Y
yangyaming 已提交
83 84
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
85
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
86
and then sums all the losses. So the shape of Out is [batch_size, 1].
87

Y
yangyaming 已提交
88
The equation is:
Y
yangyaming 已提交
89 90 91 92 93 94 95 96 97 98 99
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
100

Y
yangyaming 已提交
101 102 103 104 105 106 107 108
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

109
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
110 111
    auto in_dims = ctx->GetInputDim("X");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
112

113
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
114
                      "The tensor rank of Input(Out@Grad) should be 2.");
Y
yangyaming 已提交
115
    PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
Y
yangyaming 已提交
116 117
                      "The 1st dimension of Input(Out@Grad) must be "
                      "same as input.");
Y
yangyaming 已提交
118
    PADDLE_ENFORCE_EQ(out_dims[1], 1,
Y
yangyaming 已提交
119
                      "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
120

Q
Qiao Longfei 已提交
121 122 123 124 125 126 127 128
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
129 130 131 132 133 134 135 136
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp,
Y
yangyaming 已提交
137 138
            ops::SmoothL1LossOpMaker<float>, smooth_l1_loss_grad,
            ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
139
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
140 141
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
142 143
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
144
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);