pooling.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {
namespace math {

template <typename PoolProcess, typename T>
class Pool2dForwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
24 25
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
26
                  std::vector<int>& ksize, std::vector<int>& strides,
27
                  std::vector<int>& paddings, PoolProcess pool_process) {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
45
    T* output_data = output.mutable_data<T>(context.GetPlace());
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            T ele = pool_process.initial();
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.process(ele, input_data[h * input_width + w]);
              }
            }
            int pool_size = (hend - hstart) * (wend - wstart);
            pool_process.finalize(ele, (static_cast<T>(pool_size)));
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

template <typename PoolProcess, class T>
class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
78 79
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
80 81 82
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
83
                  PoolProcess pool_process) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
102
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
103 104 105 106 107 108 109 110 111 112 113 114

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            int pool_size = (hend - hstart) * (wend - wstart);
115
            float scale = 1.0 / pool_size;
116 117 118 119 120 121 122
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.gradProcess(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
                    input_grad_data[h * input_width + w],
123
                    static_cast<T>(scale));
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

template class Pool2dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool2dForwardFunctor<
C
chengduoZH 已提交
140
    platform::CPUPlace, paddle::operators::math::pool::avgPool<float>, float>;
141
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
142 143
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<float>,
    float>;
144
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
145 146
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<float>,
    float>;
147 148 149
template class Pool2dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool2dForwardFunctor<
C
chengduoZH 已提交
150
    platform::CPUPlace, paddle::operators::math::pool::avgPool<double>, double>;
151
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
152 153
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<double>,
    double>;
154
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
155 156
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<double>,
    double>;
157 158 159 160

template <typename PoolProcess, class T>
class Pool3dForwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
161 162
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
163
                  std::vector<int>& ksize, std::vector<int>& strides,
164
                  std::vector<int>& paddings, PoolProcess pool_process) {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
187
    T* output_data = output.mutable_data<T>(context.GetPlace());
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
              T ele = pool_process.initial();
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    pool_process.process(
                        ele,
                        input_data[(d * input_height + h) * input_width + w]);
                  }
                }
              }
              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
              pool_process.finalize(ele, static_cast<T>(pool_size));
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

template <typename PoolProcess, class T>
class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
231 232
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
233 234 235
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
236
                  PoolProcess pool_process) {
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
260
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
280
              float scale = 1.0 / pool_size;
281 282 283 284 285 286 287 288 289
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
                    pool_process.gradProcess(
                        input_data[input_idx], output_data[output_idx],
                        output_grad_data[output_idx],
290
                        input_grad_data[input_idx], static_cast<T>(scale));
291 292 293 294 295 296
                  }
                }
              }
            }
          }
        }
297 298 299 300
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
301 302 303 304 305 306 307 308
      }
    }
  }
};

template class Pool3dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool3dForwardFunctor<
C
chengduoZH 已提交
309
    platform::CPUPlace, paddle::operators::math::pool::avgPool<float>, float>;
310
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
311 312
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<float>,
    float>;
313
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
314 315
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<float>,
    float>;
316 317 318
template class Pool3dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool3dForwardFunctor<
C
chengduoZH 已提交
319
    platform::CPUPlace, paddle::operators::math::pool::avgPool<double>, double>;
320
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
321 322
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<double>,
    double>;
323
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
324 325
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<double>,
    double>;
326 327 328
}  // namespace math
}  // namespace operators
}  // namespace paddle