buffered_reader.cc 13.5 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16
#include "paddle/fluid/framework/convert_utils.h"
17
#include "paddle/fluid/platform/profiler.h"
18
#include "paddle/fluid/platform/profiler/event_tracing.h"
19

Y
yuyang18 已提交
20 21 22
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
23
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
24
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
25 26
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
27 28 29 30
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
31 32 33 34
    position_.pop();
  }
}

Y
yuyang18 已提交
35 36
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
37
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
38 39 40
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
41 42
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
43
  VLOG(1) << "BufferedReader";
44
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
45
  if (platform::is_gpu_place(place_) && !pin_memory) {
46
    int dev_idx = place_.device;
47 48 49 50 51 52 53 54 55 56 57
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
58 59 60

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
61
    int dev_idx = place_.device;
62 63 64 65 66 67 68 69 70 71 72
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
F
fwenguang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::MLUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::MluEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::MluStreamResourcePool::Instance().New(dev_idx);
  }
#endif
Y
yuyang18 已提交
88
  cpu_buffer_.resize(buffer_size);
89
  cuda_buffer_.resize(buffer_size);
90
  npu_buffer_.resize(buffer_size);
F
fwenguang 已提交
91
  mlu_buffer_.resize(buffer_size);
Y
yuyang18 已提交
92
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
93
}
F
fengjiayi 已提交
94

Y
yuyang18 已提交
95
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
96
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
97
    ReadAsync(i);
Y
yuyang18 已提交
98 99
  }
}
F
fengjiayi 已提交
100

Y
yuyang18 已提交
101
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
102 103 104
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
105

Y
yuyang18 已提交
106 107 108
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
109

110
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
111
    if (platform::is_gpu_place(place_)) {
112 113 114
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
115
      } else {
116
        PADDLE_ENFORCE_EQ(
117
            cuda.size(), cpu.size(),
118 119
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
120
      }
121 122 123 124 125 126 127 128 129 130 131 132 133 134
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
135 136 137
        platform::RecordEvent record_event(
            "BufferedReader:MemoryCopy", platform::TracerEventType::UserDefined,
            1);
138
        // NODE(chenweihang): When we use CUDAPinned Memory, we need call
139 140 141
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
142
        platform::SetDeviceId(place_.device);
143 144 145 146
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
147 148
            cuda_pinned_ptrs[i] =
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type());
149 150
            auto size = cpu[i].numel() *
                        paddle::framework::DataTypeSize(cpu[i].dtype());
151

152
            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i], cpu[i].place(),
153
                         cpu[i].data(), size);
154

155 156
            cuda[i].set_lod(cpu[i].lod());
          } else {
157 158 159 160
            // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or
            // others, we don't copy the memory of it to CUDAPinnedPlace, but
            // we should share tensor data to cuda[i]
            cuda[i].ShareDataWith(cpu[i]);
161 162 163 164 165 166 167 168 169 170 171 172 173 174
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
175

176 177 178
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
179
        platform::SetDeviceId(place_.device);
180
#ifdef PADDLE_WITH_HIP
181
        PADDLE_ENFORCE_GPU_SUCCESS(
182
            hipEventRecord(events_[i].get(), compute_stream_));
183
        PADDLE_ENFORCE_GPU_SUCCESS(
184 185
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
186
        PADDLE_ENFORCE_GPU_SUCCESS(
187
            cudaEventRecord(events_[i].get(), compute_stream_));
188
        PADDLE_ENFORCE_GPU_SUCCESS(
189
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
190
#endif
191

192 193 194
        platform::RecordEvent record_event(
            "BufferedReader:MemoryCopy", platform::TracerEventType::UserDefined,
            1);
195 196
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
197
          auto cpu_ptr = cpu[i].data();
198
          auto gpu_ptr = gpu_ptrs[i];
199
          auto size =
200
              cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
201
          if (platform::is_cuda_pinned_place(cpu_place)) {
202 203
            memory::Copy(place_, gpu_ptr, cpu_place, cpu_ptr, size,
                         stream_.get());
204
          } else if ((platform::is_gpu_place(cpu_place))) {
205 206
            memory::Copy(place_, gpu_ptr, cpu_place, cpu_ptr, size,
                         stream_.get());
207 208 209 210 211 212
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
213 214 215 216
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr, cpu_place, cpu_ptr,
                         size);
            memory::Copy(place_, gpu_ptr, cuda_pinned_place, cuda_pinned_ptr,
                         size, stream_.get());
217 218

            platform::GpuStreamSync(stream_.get());
219 220
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
221
        }
222
        platform::GpuStreamSync(stream_.get());
Y
yuyang18 已提交
223
      }
Y
yuyang18 已提交
224
    }
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            npu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
                npu.size(), cpu.size()));
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

249
      platform::SetNPUDeviceId(place_.device);
250 251
      platform::NPUEventRecord(events_[i].get(), compute_stream_);
      platform::NPUStreamWaitEvent(stream_.get(), events_[i].get());
252

253 254 255
      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
256 257
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
258
        auto cpu_ptr = cpu[i].data();
259 260
        auto npu_ptr = npu_ptrs[i];
        auto size =
261
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
262
        if ((platform::is_npu_place(cpu_place))) {
263 264
          memory::Copy(place_, npu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
265
        } else {
266 267
          memory::Copy(place_, npu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
268
          platform::NPUStreamSync(stream_.get());
269 270 271
        }
        npu[i].set_lod(cpu[i].lod());
      }
272
      platform::NPUStreamSync(stream_.get());
273 274
    }
#endif
F
fwenguang 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

#ifdef PADDLE_WITH_MLU
    if (platform::is_mlu_place(place_)) {
      TensorVec &mlu = mlu_buffer_[i];
      if (mlu.empty()) {
        mlu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            mlu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on MLU and CPU devices are not matched. "
                "The number on MLU is %d, on CPU is %d",
                mlu.size(), cpu.size()));
      }

      std::vector<void *> mlu_ptrs;
      mlu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        mlu[i].Resize(cpu[i].dims());
        mlu[i].set_layout(cpu[i].layout());
        mlu_ptrs.emplace_back(mlu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetMLUDeviceId(place_.device);
      PADDLE_ENFORCE_MLU_SUCCESS(
          cnPlaceNotifier(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_MLU_SUCCESS(cnWaitNotifier(events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto mlu_ptr = mlu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        if ((platform::is_mlu_place(cpu_place))) {
          memory::Copy(place_, mlu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
        } else {
          memory::Copy(place_, mlu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
          platform::MLUStreamSync(stream_.get());
        }
        mlu[i].set_lod(cpu[i].lod());
      }
      platform::MLUStreamSync(stream_.get());
    }
#endif
Y
yuyang18 已提交
325
    return i;
Y
yuyang18 已提交
326 327
  }));
}
F
fengjiayi 已提交
328

Y
yuyang18 已提交
329
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
330
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
331
  reader_->Shutdown();
Y
yuyang18 已提交
332 333 334
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
335
  prev_pos_ = -1UL;
Y
yuyang18 已提交
336
}
F
fengjiayi 已提交
337

Y
yuyang18 已提交
338 339
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
340
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
341
}
F
fengjiayi 已提交
342

Y
yuyang18 已提交
343
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
344 345 346 347 348 349 350 351 352 353 354 355
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

356
  if (platform::is_gpu_place(place_)) {
357
    *out = std::move(cuda_buffer_[i]);
358
  } else if (platform::is_npu_place(place_)) {
359
    *out = std::move(npu_buffer_[i]);
F
fwenguang 已提交
360 361
  } else if (platform::is_mlu_place(place_)) {
    *out = std::move(mlu_buffer_[i]);
362 363 364
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
365 366 367 368 369 370 371 372

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
373 374 375 376 377
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle