executor.py 8.8 KB
Newer Older
D
dzhwinter 已提交
1
import numpy as np
2
from . import core
T
typhoonzero 已提交
3
from framework import Program, default_main_program, Parameter, Variable
T
wip  
typhoonzero 已提交
4
import distribute_planner
5 6

__all__ = ['Executor', 'g_scope']
Y
Yu Yang 已提交
7

Y
Yu Yang 已提交
8 9
g_scope = core.Scope()

Y
Yu Yang 已提交
10

D
dzhwinter 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
    tensor_data = np.array(tensor)
    if len(lod) == 0:
        ans = tensor_data
    else:
        raise RuntimeError("LoD Calculate lacks unit tests and buggy")
    # elif len(lod) == 1:
    #     ans = []
    #     idx = 0
    #     while idx < len(lod) - 1:
    #         ans.append(tensor_data[lod[idx]:lod[idx + 1]])
    #         idx += 1
    # else:
    #     for l in reversed(lod):
    #         ans = []
    #         idx = 0
    #         while idx < len(l) - 1:
    #             ans.append(tensor_data[l[idx]:l[idx + 1]])
    #             idx += 1
    #         tensor_data = ans
    #     ans = tensor_data
    return ans


Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

        self.executor = core.Executor(act_places)
D
dzhwinter 已提交
51 52
        self.places = places

T
typhoonzero 已提交
53
    def optimize(self, optimize_ops, params_grads, program=None, **kwargs):
T
wip  
typhoonzero 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        """
            optimize the program for different runtime environment

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string

            :return: return a list of programs
        """
        if program is None:
            program = default_main_program()

        if kwargs.has_key("pservers"):
T
typhoonzero 已提交
70 71
            return self._optimize_distributed(optimize_ops, program,
                                              params_grads, **kwargs)
T
wip  
typhoonzero 已提交
72

T
typhoonzero 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def _clone_param(self, block, v):
        assert isinstance(v, Parameter)
        new_p = Parameter(
            block=block,
            shape=v.shape,
            dtype=v.dtype,
            type=v.type,
            lod_level=v.lod_level,
            stop_gradient=v.stop_gradient,
            trainable=v.trainable,
            optimize_attr=v.optimize_attr,
            regularizer=v.regularizer,
            name=v.name)
        block.vars[new_p.name] = new_p

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)

T
update  
typhoonzero 已提交
98 99
    def _optimize_distributed(self, optimize_ops, program, params_and_grads,
                              **kwargs):
T
wip  
typhoonzero 已提交
100 101 102 103 104 105 106 107 108 109 110 111
        # remove optimize ops and add a send op to main_program
        # FIXME(typhoonzero): delete_op only remove the first accurence,
        # need to consider about multiple same optimize op?
        for op in optimize_ops:
            program.global_block().delete_op(op)
        if kwargs.has_key("split_method"):
            split_method = kwargs["split_method"]
        else:
            split_method = distribute_planner.round_robin

        assert (callable(split_method))
        pserver_endpoints = kwargs["pservers"].split(",")
T
typhoonzero 已提交
112
        self.param_grad_map = split_method(params_and_grads, pserver_endpoints)
T
wip  
typhoonzero 已提交
113 114 115 116 117

        for ep in pserver_endpoints:
            # FIXME(typhoonzero): send to different servers can run in parrallel.
            send_op = program.global_block().append_op(
                type="send",
T
typhoonzero 已提交
118
                inputs={"X": self.param_grad_map[ep]["grads"]
T
wip  
typhoonzero 已提交
119
                        },  # inputs is a list of tensors to be send
T
typhoonzero 已提交
120
                outputs={},
T
wip  
typhoonzero 已提交
121 122
                attrs={"endpoint": ep})

T
typhoonzero 已提交
123
    def get_pserver_program(self, endpoint, optimize_ops):
T
update  
typhoonzero 已提交
124
        pserver_program = Program()
T
typhoonzero 已提交
125
        for v in self.param_grad_map[endpoint]["params"]:
T
typhoonzero 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            self._clone_param(pserver_program.global_block(), v)

        optimize_sub_program = Program()
        for opt_op in optimize_ops:
            for varname, var in opt_op.inputs.iteritems():
                optimize_sub_program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)
            optimize_sub_program.global_block().append_op(
                type=opt_op.type,
                inputs=opt_op.inputs,
                outputs=opt_op.outputs,
                attrs=opt_op.attrs)
        print("optimize program: ", optimize_sub_program)
T
update  
typhoonzero 已提交
142 143 144 145 146 147 148

        pserver_program.global_block().append_op(
            type="recv",
            inputs={"RX":
                    self.param_grad_map[endpoint]["grads"]},  # grads to recv
            outputs={},
            attrs={
T
typhoonzero 已提交
149
                "OptimizeProgram": optimize_sub_program.desc,
T
typhoonzero 已提交
150
                "endpoint": endpoint,
T
typhoonzero 已提交
151 152 153 154
                "ParamList":
                [p.name for p in self.param_grad_map[endpoint]["params"]],
                "GradList":
                [p.name for p in self.param_grad_map[endpoint]["grads"]]
T
update  
typhoonzero 已提交
155
            })
T
typhoonzero 已提交
156
        pserver_program.sync_with_cpp()
T
typhoonzero 已提交
157
        return pserver_program
T
wip  
typhoonzero 已提交
158

D
dzhwinter 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
198 199

    def run(self,
Y
Yu Yang 已提交
200
            program=None,
201 202
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
203
            feed_var_name='feed',
Y
Yu Yang 已提交
204
            fetch_var_name='fetch',
D
dzhwinter 已提交
205 206
            scope=None,
            return_numpy=True):
207 208 209 210 211
        if feed is None:
            feed = {}
        if fetch_list is None:
            fetch_list = []

Y
Yu Yang 已提交
212
        if program is None:
Y
Yu Yang 已提交
213
            program = default_main_program()
Y
Yu Yang 已提交
214

Y
Yu Yang 已提交
215 216 217
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
218 219 220
        if scope is None:
            scope = g_scope

Y
Yu Yang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234
        program = program.clone()
        global_block = program.global_block()
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

        for i, name in enumerate(feed):
            out = global_block.var(name)
            global_block.prepend_op(
                'feed',
                inputs={'X': [feed_var]},
                outputs={'Out': [out]},
                attrs={'col': i})
D
dzhwinter 已提交
235 236 237 238
            cur_feed = feed[name]
            if not isinstance(cur_feed, core.LoDTensor):
                cur_feed = self.aslodtensor(cur_feed)
            core.set_feed_variable(scope, cur_feed, feed_var.name, i)
Y
Yu Yang 已提交
239 240 241 242 243 244 245 246 247 248 249 250

        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)
        for i, var in enumerate(fetch_list):
            global_block.append_op(
                type='fetch',
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i})

Y
Yu Yang 已提交
251
        self.executor.run(program.desc, scope, 0, True)
D
dzhwinter 已提交
252
        outs = [
Y
Yu Yang 已提交
253
            core.get_fetch_variable(scope, fetch_var_name, i)
Y
Yu Yang 已提交
254 255
            for i in xrange(len(fetch_list))
        ]
D
dzhwinter 已提交
256 257 258 259

        if return_numpy:
            outs = as_numpy(outs)
        return outs