executor.py 7.6 KB
Newer Older
D
dzhwinter 已提交
1
import numpy as np
2
from . import core
Y
Yu Yang 已提交
3
from framework import Program, default_main_program
T
wip  
typhoonzero 已提交
4
import distribute_planner
5 6

__all__ = ['Executor', 'g_scope']
Y
Yu Yang 已提交
7

Y
Yu Yang 已提交
8 9
g_scope = core.Scope()

Y
Yu Yang 已提交
10

D
dzhwinter 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
    tensor_data = np.array(tensor)
    if len(lod) == 0:
        ans = tensor_data
    else:
        raise RuntimeError("LoD Calculate lacks unit tests and buggy")
    # elif len(lod) == 1:
    #     ans = []
    #     idx = 0
    #     while idx < len(lod) - 1:
    #         ans.append(tensor_data[lod[idx]:lod[idx + 1]])
    #         idx += 1
    # else:
    #     for l in reversed(lod):
    #         ans = []
    #         idx = 0
    #         while idx < len(l) - 1:
    #             ans.append(tensor_data[l[idx]:l[idx + 1]])
    #             idx += 1
    #         tensor_data = ans
    #     ans = tensor_data
    return ans


Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

        self.executor = core.Executor(act_places)
D
dzhwinter 已提交
51 52
        self.places = places

T
wip  
typhoonzero 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def optimize(self, optimize_ops, program=None, **kwargs):
        """
            optimize the program for different runtime environment

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string

            :return: return a list of programs
        """
        if program is None:
            program = default_main_program()

        if kwargs.has_key("pservers"):
            return self._optimize_distributed(optimize_ops, program, **kwargs)

    def _optimize_distributed(self, optimize_ops, program, **kwargs):
        # remove optimize ops and add a send op to main_program
        # FIXME(typhoonzero): delete_op only remove the first accurence,
        # need to consider about multiple same optimize op?
        for op in optimize_ops:
            program.global_block().delete_op(op)
        if kwargs.has_key("split_method"):
            split_method = kwargs["split_method"]
        else:
            split_method = distribute_planner.round_robin

        assert (callable(split_method))
        pserver_endpoints = kwargs["pservers"].split(",")
        params = program.global_block().all_parameters()
        param_map = split_method(params, pserver_endpoints)

        for ep in pserver_endpoints:
            # FIXME(typhoonzero): send to different servers can run in parrallel.
            send_op = program.global_block().append_op(
                type="send",
                inputs={"X": param_map[ep]
                        },  # inputs is a list of tensors to be send
                outputs={"Out": param_map[ep]},
                attrs={"endpoint": ep})
        # -------------- generate pserver program --------------
        self.parameter_server_program_map = dict()

        optimize_sub_program = Program()
        optimize_ops = self.create_optimization_pass(
            params_grads, optimize_sub_program, startup_program)
        param_list = []
        for param in params:
            if param.trainable is True:
                param_list.append(param)

        param_map = split_method(params, pserver_endpoints)

        for ep in pserver_endpoints:
            pserver_program = Program()
            self.parameter_server_program_map[ep] = pserver_program
            pserver_program.global_block().append_op(
                type="recv",
                inputs={"RX": param_map[ep]},  # grads to recv
                outputs={},
                attrs={
                    "OptimizeBlock": optimize_sub_program.global_block(),
                    "endpoint": ep
                })

    def get_pserver_program(self, endpoint):
        pass

    def get_trainer_program(self):
        return default_main_program()

D
dzhwinter 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
166 167

    def run(self,
Y
Yu Yang 已提交
168
            program=None,
169 170
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
171
            feed_var_name='feed',
Y
Yu Yang 已提交
172
            fetch_var_name='fetch',
D
dzhwinter 已提交
173 174
            scope=None,
            return_numpy=True):
175 176 177 178 179
        if feed is None:
            feed = {}
        if fetch_list is None:
            fetch_list = []

Y
Yu Yang 已提交
180
        if program is None:
Y
Yu Yang 已提交
181
            program = default_main_program()
Y
Yu Yang 已提交
182

Y
Yu Yang 已提交
183 184 185
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
186 187 188
        if scope is None:
            scope = g_scope

Y
Yu Yang 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202
        program = program.clone()
        global_block = program.global_block()
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

        for i, name in enumerate(feed):
            out = global_block.var(name)
            global_block.prepend_op(
                'feed',
                inputs={'X': [feed_var]},
                outputs={'Out': [out]},
                attrs={'col': i})
D
dzhwinter 已提交
203 204 205 206
            cur_feed = feed[name]
            if not isinstance(cur_feed, core.LoDTensor):
                cur_feed = self.aslodtensor(cur_feed)
            core.set_feed_variable(scope, cur_feed, feed_var.name, i)
Y
Yu Yang 已提交
207 208 209 210 211 212 213 214 215 216 217 218

        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)
        for i, var in enumerate(fetch_list):
            global_block.append_op(
                type='fetch',
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i})

Y
Yu Yang 已提交
219
        self.executor.run(program.desc, scope, 0, True)
D
dzhwinter 已提交
220
        outs = [
Y
Yu Yang 已提交
221
            core.get_fetch_variable(scope, fetch_var_name, i)
Y
Yu Yang 已提交
222 223
            for i in xrange(len(fetch_list))
        ]
D
dzhwinter 已提交
224 225 226 227

        if return_numpy:
            outs = as_numpy(outs)
        return outs