sequence_pooling.cc 13.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15
#include <string>
M
minqiyang 已提交
16

T
tensor-tang 已提交
17
#include "paddle/fluid/operators/jit/kernels.h"
M
minqiyang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
20
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
26 27 28 29 30 31 32 33 34
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

J
Jacek Czaja 已提交
35
template <typename T, bool is_test>
D
dzhwinter 已提交
36
class MaxSeqPoolFunctor {
37
 public:
Q
QI JUN 已提交
38
  void operator()(const platform::CPUDeviceContext& context,
39 40
                  const framework::LoDTensor& input, T pad_value,
                  framework::Tensor* output, framework::Tensor* index) {
41 42 43
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
D
dangqingqing 已提交
44 45 46
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
47 48 49 50 51 52 53 54 55 56 57 58
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, out_dims);

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
59 60 61 62 63 64 65
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
          max_index[i * dim + k] = -1;
        }
        continue;
      }
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};
J
Jacek Czaja 已提交
81 82 83 84 85 86
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template <typename T>
class MaxSeqPoolFunctor<T, true> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
87 88
                  const framework::LoDTensor& input, T pad_value,
                  framework::Tensor* output, framework::Tensor* index) {
J
Jacek Czaja 已提交
89 90 91 92 93 94 95 96 97 98 99
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
100

J
Jacek Czaja 已提交
101 102 103
    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
104 105 106 107 108 109
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
        }
        continue;
      }
J
Jacek Czaja 已提交
110 111 112 113 114 115 116 117 118 119 120 121
      std::memcpy(&out_data[i * dim], &in_data[starts[i] * dim],
                  dim * sizeof(T));
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
          }
        }
      }
    }
  }
};
122
template <typename T>
D
dzhwinter 已提交
123
class MaxSeqPoolGradFunctor {
124
 public:
Q
QI JUN 已提交
125
  void operator()(const platform::CPUDeviceContext& context,
126 127 128 129 130 131
                  const framework::Tensor& out_grad,
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
D
dangqingqing 已提交
132 133 134
    PADDLE_ENFORCE_GT(og_dims.size(), 1);
    PADDLE_ENFORCE_GT(ig_dims.size(), 1);
    for (int64_t i = 1; i < og_dims.size(); ++i) {
135 136 137 138 139 140 141 142
      PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, og_dims);

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

Q
QI JUN 已提交
143
    SetConstant<platform::CPUDeviceContext, T> set_zero;
144 145 146
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
147 148
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
149
        int step_id = max_index[i * dim + j];
150
        if (step_id == -1) continue;
151 152 153 154 155 156
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

157
template <typename T>
B
bingyanghuang 已提交
158
class LastSeqPoolFunctor {
159 160
 public:
  void operator()(const platform::CPUDeviceContext& context,
161
                  const framework::LoDTensor& input, T pad_value,
B
bingyanghuang 已提交
162
                  framework::Tensor* output) {
B
bingyanghuang 已提交
163 164 165
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
166

B
bingyanghuang 已提交
167 168 169 170
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
171 172 173
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
174 175 176 177 178 179 180 181 182 183
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Point to the begin of next sequence
        in_data += seq_len * item_size;
        // Copy the last item of sequence to output
        std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      }
B
bingyanghuang 已提交
184
      out_data += item_size;
B
bingyanghuang 已提交
185
    }
B
bingyanghuang 已提交
186 187 188 189 190 191 192
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
193
                  const framework::LoDTensor& input, T pad_value,
B
bingyanghuang 已提交
194
                  framework::Tensor* output) {
B
bingyanghuang 已提交
195 196 197 198 199 200 201 202 203 204 205
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
206 207 208 209 210 211 212 213 214 215
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Copy the first item of sequence to output
        std::memcpy(out_data, in_data, item_size * sizeof(T));
        // Point to the next sequence
        in_data += seq_len * item_size;
      }
B
bingyanghuang 已提交
216
      out_data += item_size;
B
bingyanghuang 已提交
217
    }
B
bingyanghuang 已提交
218
  }
219 220
};

M
minqiyang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
template <typename T>
class SumSeqPoolGradFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad) {
    auto lod = in_grad->lod()[0];
    int64_t out_w = out_grad.numel() / out_grad.dims()[0];
    int64_t in_w = in_grad->numel() / in_grad->dims()[0];
    PADDLE_ENFORCE(in_w == out_w);
    const T* out_g_data = out_grad.data<T>();
    T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
236
      if (h == 0) continue;
M
minqiyang 已提交
237 238 239 240 241 242 243 244 245 246
      int64_t in_offset = lod[i] * in_w;
      const T* out_pos = out_g_data + i * out_w;
      T* in_pos = in_g_data + in_offset;
      for (int r = 0; r != h; ++r) {
        blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
      }
    }
  }
};

D
dzhwinter 已提交
247 248 249 250 251
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
252 253 254
                  const std::string pooltype, T pad_value,
                  const framework::LoDTensor& input, framework::Tensor* output,
                  bool is_test, framework::Tensor* index = nullptr) {
D
dzhwinter 已提交
255
    if (pooltype == "MAX") {
J
Jacek Czaja 已提交
256 257
      if (is_test) {
        math::MaxSeqPoolFunctor<T, true> max_pool;
258
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
259 260
      } else {
        math::MaxSeqPoolFunctor<T, false> max_pool;
261
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
262
      }
D
dzhwinter 已提交
263 264
      return;
    }
B
bingyanghuang 已提交
265 266
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
267
      last_pool(context, input, pad_value, output);
268 269
      return;
    }
B
bingyanghuang 已提交
270 271
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
272
      first_pool(context, input, pad_value, output);
B
bingyanghuang 已提交
273 274
      return;
    }
T
tensor-tang 已提交
275

D
dzhwinter 已提交
276
    auto lod = input.lod()[0];
T
tensor-tang 已提交
277 278 279 280 281
    if (pooltype == "SUM") {
      auto place = context.GetPlace();
      PADDLE_ENFORCE(platform::is_cpu_place(place));
      const T* src = input.data<T>();
      T* dst = output->mutable_data<T>(place);
T
tensor-tang 已提交
282 283 284
      jit::seq_pool_attr_t attr(
          static_cast<int>(input.numel() / input.dims()[0]),
          jit::SeqPoolType::kSum);
285 286 287
      auto seqpool =
          jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache()
              .At(attr);
T
tensor-tang 已提交
288 289
      for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
        attr.h = static_cast<int>(lod[i + 1] - lod[i]);
290 291 292 293 294 295 296
        if (attr.h == 0) {
          for (int j = 0; j < attr.w; ++j) {
            dst[j] = pad_value;
          }
        } else {
          seqpool(src, dst, &attr);
        }
T
tensor-tang 已提交
297 298 299 300 301
        dst += attr.w;
        src += attr.h * attr.w;
      }
      return;
    }
D
dzhwinter 已提交
302 303
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
304 305 306 307 308 309 310 311
      Tensor out_t = output->Slice(i, i + 1);
      int64_t w = input.numel() / input.dims()[0];
      if (lod[i] == lod[i + 1]) {
        for (int j = 0; j < w; ++j) {
          out_t.data<T>()[j] = pad_value;
        }
        continue;
      }
D
dzhwinter 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(context, in_grad, 0);
    }
M
minqiyang 已提交
348 349

    if (pooltype == "SUM") {
M
minqiyang 已提交
350 351
      math::SumSeqPoolGradFunctor<T> sum_pool_grad;
      sum_pool_grad(context, out_grad, in_grad);
M
minqiyang 已提交
352 353 354
      return;
    }

D
dzhwinter 已提交
355 356 357
    auto lod = in_grad->lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
358
      if (lod[i] == lod[i + 1]) continue;
D
dzhwinter 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
389 390 391 392

}  // namespace math
}  // namespace operators
}  // namespace paddle