sequence_pooling.cc 12.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15
#include <string>
M
minqiyang 已提交
16 17

#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
19
#include "paddle/fluid/operators/math/sequence_pooling.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
25 26 27 28 29 30 31 32 33
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

J
Jacek Czaja 已提交
34
template <typename T, bool is_test>
D
dzhwinter 已提交
35
class MaxSeqPoolFunctor {
36
 public:
Q
QI JUN 已提交
37
  void operator()(const platform::CPUDeviceContext& context,
38 39 40 41 42
                  const framework::LoDTensor& input, framework::Tensor* output,
                  framework::Tensor* index) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
D
dangqingqing 已提交
43 44 45
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, out_dims);

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};
J
Jacek Czaja 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template <typename T>
class MaxSeqPoolFunctor<T, true> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::LoDTensor& input, framework::Tensor* output,
                  framework::Tensor* index) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
92

J
Jacek Czaja 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
      std::memcpy(&out_data[i * dim], &in_data[starts[i] * dim],
                  dim * sizeof(T));
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
          }
        }
      }
    }
  }
};
108
template <typename T>
D
dzhwinter 已提交
109
class MaxSeqPoolGradFunctor {
110
 public:
Q
QI JUN 已提交
111
  void operator()(const platform::CPUDeviceContext& context,
112 113 114 115 116 117
                  const framework::Tensor& out_grad,
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
D
dangqingqing 已提交
118 119 120
    PADDLE_ENFORCE_GT(og_dims.size(), 1);
    PADDLE_ENFORCE_GT(ig_dims.size(), 1);
    for (int64_t i = 1; i < og_dims.size(); ++i) {
121 122 123 124 125 126 127 128
      PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, og_dims);

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

Q
QI JUN 已提交
129
    SetConstant<platform::CPUDeviceContext, T> set_zero;
130 131 132
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
133 134
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
135 136 137 138 139 140 141
        int step_id = max_index[i * dim + j];
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

142
template <typename T>
B
bingyanghuang 已提交
143
class LastSeqPoolFunctor {
144 145
 public:
  void operator()(const platform::CPUDeviceContext& context,
B
bingyanghuang 已提交
146 147
                  const framework::LoDTensor& input,
                  framework::Tensor* output) {
B
bingyanghuang 已提交
148 149 150
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
151

B
bingyanghuang 已提交
152 153 154 155
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
156 157 158 159 160 161 162 163
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
      // Point to the begin of next sequence
      in_data += seq_len * item_size;
      // Copy the last item of sequence to output
      std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      out_data += item_size;
B
bingyanghuang 已提交
164
    }
B
bingyanghuang 已提交
165 166 167 168 169 170 171
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
B
bingyanghuang 已提交
172 173
                  const framework::LoDTensor& input,
                  framework::Tensor* output) {
B
bingyanghuang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
      // Copy the first item of sequence to output
      std::memcpy(out_data, in_data, item_size * sizeof(T));
      // Point to the next sequence
      in_data += seq_len * item_size;
      out_data += item_size;
B
bingyanghuang 已提交
190
    }
B
bingyanghuang 已提交
191
  }
192 193
};

M
minqiyang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
template <typename T>
class SumSeqPoolGradFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad) {
    auto lod = in_grad->lod()[0];
    int64_t out_w = out_grad.numel() / out_grad.dims()[0];
    int64_t in_w = in_grad->numel() / in_grad->dims()[0];
    PADDLE_ENFORCE(in_w == out_w);
    const T* out_g_data = out_grad.data<T>();
    T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t in_offset = lod[i] * in_w;
      const T* out_pos = out_g_data + i * out_w;
      T* in_pos = in_g_data + in_offset;
      for (int r = 0; r != h; ++r) {
        blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
      }
    }
  }
};

D
dzhwinter 已提交
219 220 221 222 223 224
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::LoDTensor& input,
J
Jacek Czaja 已提交
225
                  framework::Tensor* output, bool is_test,
D
dzhwinter 已提交
226 227
                  framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
J
Jacek Czaja 已提交
228 229 230 231 232 233 234
      if (is_test) {
        math::MaxSeqPoolFunctor<T, true> max_pool;
        max_pool(context, input, output, index);
      } else {
        math::MaxSeqPoolFunctor<T, false> max_pool;
        max_pool(context, input, output, index);
      }
D
dzhwinter 已提交
235 236
      return;
    }
B
bingyanghuang 已提交
237 238 239
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
      last_pool(context, input, output);
240 241
      return;
    }
J
Jacek Czaja 已提交
242

B
bingyanghuang 已提交
243 244 245 246 247
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
      first_pool(context, input, output);
      return;
    }
D
dzhwinter 已提交
248 249
    auto lod = input.lod()[0];
    auto& place = *context.eigen_device();
M
minqiyang 已提交
250
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
D
dzhwinter 已提交
251 252 253 254 255 256 257 258 259 260 261
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      Tensor out_t = output->Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = input.numel() / input.dims()[0];
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SUM") {
M
minqiyang 已提交
262 263 264 265 266 267 268 269
        if (h > 0) {
          const T* in_data = in_t.data<T>();
          T* out_data = out_t.mutable_data<T>(context.GetPlace());
          blas.VCOPY(w, in_data, out_data);
          for (int64_t r = 1; r != h; ++r) {
            blas.AXPY(w, 1., in_data + r * w, out_data);
          }
        }
D
dzhwinter 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(context, in_grad, 0);
    }
M
minqiyang 已提交
299 300

    if (pooltype == "SUM") {
M
minqiyang 已提交
301 302
      math::SumSeqPoolGradFunctor<T> sum_pool_grad;
      sum_pool_grad(context, out_grad, in_grad);
M
minqiyang 已提交
303 304 305
      return;
    }

D
dzhwinter 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    auto lod = in_grad->lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
339 340 341 342

}  // namespace math
}  // namespace operators
}  // namespace paddle