ir_pass_manager.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
16
#include <map>
17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20 21
#include <unordered_set>
#include <utility>
L
luotao1 已提交
22
#include <vector>
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
24 25
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
26
#include "paddle/fluid/inference/analysis/argument.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/string/pretty_log.h"
28 29 30 31

namespace paddle {
namespace inference {
namespace analysis {
Y
Yan Chunwei 已提交
32 33 34
using string::PrettyLogEndl;
using string::PrettyLog;
using string::Style;
35

36 37 38 39
IRPassManager::IRPassManager(Argument *argument) {
  ARGUMENT_CHECK_FIELD(argument, main_program);
  graph_ = std::unique_ptr<Graph>(new Graph(argument->main_program()));
  if (argument->Has("scope")) {
40 41 42
    auto *scope_ptr = argument->scope_ptr();
    PADDLE_ENFORCE(scope_ptr);
    graph_->SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
43 44 45 46
  }

  ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes);
  CreatePasses(argument, argument->ir_analysis_passes());
47 48
}

49 50
void IRPassManager::CreatePasses(Argument *argument,
                                 const std::vector<std::string> &passes) {
51
  std::string pre_pass;
L
luotao1 已提交
52
  int pass_num = 0;
53
  for (const std::string &pass_name : passes) {
54
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_name);
55

56
    if (pass_name == "graph_viz_pass") {
L
luotao1 已提交
57 58 59
      std::string dot_file_path = std::to_string(pass_num) + "_ir_" +
                                  (pre_pass.empty() ? "origin" : pre_pass) +
                                  ".dot";
60
      pass->Set("graph_viz_path", new std::string(std::move(dot_file_path)));
L
luotao1 已提交
61
      pass_num++;
62
    } else if (pass_name == "mkldnn_placement_pass") {
63 64 65
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->mkldnn_enabled_op_types()));
66 67 68
    } else if (pass_name == "cudnn_placement_pass") {
      pass->Set("cudnn_enabled_op_types",
                new std::unordered_set<std::string>());
69
#ifdef PADDLE_WITH_MKLDNN
70 71 72 73 74 75 76
    } else if (pass_name == "cpu_quantize_placement_pass") {
      pass->Set("quantize_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->quantize_enabled_op_types()));
      pass->Set(
          "quantize_excluded_op_ids",
          new std::unordered_set<int>(argument->quantize_excluded_op_ids()));
77 78 79
    } else if (pass_name == "cpu_quantize_pass") {
      pass->Set("quant_var_scales",
                new VarQuantScale(argument->quant_var_scales()));
80
#endif
81
    } else if (pass_name == "tensorrt_subgraph_pass") {
82 83
      pass->Set("workspace_size", new int(argument->tensorrt_workspace_size()));
      pass->Set("max_batch_size", new int(argument->tensorrt_max_batch_size()));
84 85
      pass->Set("min_subgraph_size",
                new int(argument->tensorrt_min_subgraph_size()));
N
nhzlx 已提交
86 87
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
N
nhzlx 已提交
88

Z
Zhaolong Xing 已提交
89 90
      auto precision_mode = argument->tensorrt_precision_mode();
      bool enable_int8 = precision_mode == AnalysisConfig::Precision::kInt8;
N
nhzlx 已提交
91

92
      pass->Set("predictor_id", new int(argument->predictor_id()));
93
      bool use_calib_mode = argument->tensorrt_use_calib_mode();
N
nhzlx 已提交
94
      pass->Set("enable_int8", new bool(enable_int8));
95
      pass->Set("use_calib_mode", new bool(use_calib_mode));
Z
Zhaolong Xing 已提交
96 97
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
98 99 100

      bool use_static_engine = argument->tensorrt_use_static_engine();
      bool model_from_memory = argument->model_from_memory();
101 102 103
      std::string optim_cache_dir = argument->optim_cache_dir();
      bool int8_valid =
          !(model_from_memory && optim_cache_dir.empty() && enable_int8);
N
nhzlx 已提交
104
      PADDLE_ENFORCE(int8_valid,
105 106 107 108 109 110
                     "When you are in TRT INT8 mode, and load model from "
                     "memory, you should set optim_cache_dir using "
                     "config.SetOptimCacheDir()");
      PADDLE_ENFORCE(!(model_from_memory && use_static_engine),
                     "When you are using Paddle-TRT, and also using load model "
                     "from memory, you should set the use_static to false.");
N
nhzlx 已提交
111

112 113 114
      if (!optim_cache_dir.empty()) {
        pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir));
      } else if (use_static_engine || enable_int8) {
115 116 117 118 119 120 121 122
        std::string model_opt_cache_dir =
            argument->Has("model_dir")
                ? argument->model_dir()
                : GetDirRoot(argument->model_program_path());
        pass->Set(
            "model_opt_cache_dir",
            new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir)));
      }
N
nhzlx 已提交
123
      pass->Set("gpu_device_id", new int(argument->gpu_device_id()));
124
      pass->Set("use_static_engine", new bool(use_static_engine));
125
      pass->Set("model_from_memory", new bool(argument->model_from_memory()));
126
    }
M
mozga-intel 已提交
127 128 129 130
    if (pass_name == "ngraph_subgraph_pass") {
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
    }
131 132 133
    if (pass_name == "anakin_subgraph_pass") {
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
134
      pass->Set("use_gpu", new bool(argument->use_gpu()));
N
nhzlx 已提交
135
      pass->Set("gpu_device_id", new int(argument->gpu_device_id()));
136 137 138 139 140
      pass->Set("model_from_memory", new bool(argument->model_from_memory()));
      pass->Set("predictor_id", new int(argument->predictor_id()));
      pass->Set("max_input_shape", new std::map<std::string, std::vector<int>>(
                                       argument->anakin_max_input_shape()));
      pass->Set("max_batch_size", new int(argument->anakin_max_batch_size()));
141 142 143 144 145 146 147
      bool enable_int8 =
          argument->anakin_precision_mode() == AnalysisConfig::Precision::kInt8;
      pass->Set("enable_int8", new bool(enable_int8));
      pass->Set("anakin_ops_filter",
                new std::vector<std::string>(argument->anakin_ops_filter()));
      pass->Set("auto_config_layout",
                new bool(argument->anakin_auto_config_layout()));
148
    }
149
    disable_logs_ = argument->disable_logs();
150 151 152
    if (pass_name == "fc_fuse_pass") {
      pass->Set("use_gpu", new bool(argument->use_gpu()));
    }
153

154
    pre_pass = pass_name;
155 156

    passes_.emplace_back(std::move(pass));
157 158 159
  }
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
bool IRPassManager::HasPass(const std::string &pass_type) {
  if (passes_.empty()) return false;
  auto it = std::find_if(
      passes_.begin(), passes_.end(),
      [&](std::unique_ptr<Pass> &pass) { return pass->Type() == pass_type; });
  return it != passes_.end();
}

std::unique_ptr<Pass> &IRPassManager::GetPass(const std::string &pass_type) {
  PADDLE_ENFORCE_EQ(passes_.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "The list of passes cannot be empty."));
  auto it = std::find_if(passes_.begin(), passes_.end(),
                         [&](const std::unique_ptr<Pass> &pass) {
                           return pass->Type() == pass_type;
                         });
  PADDLE_ENFORCE_NE(it, passes_.end(),
                    platform::errors::PermissionDenied(
                        "You cannot get pass which was not added earlier."));
  return *it;
}

// Some passes depend on each other. This method serves for exchanging
// information between them.
void IRPassManager::UpdatePasses() {
  // Update padding settings for fc_fuse_pass. Skipp adding padding for
  // MKL-DNN-based FC
  bool use_fc_padding = !HasPass("fc_mkldnn_pass");
  if (HasPass("fc_fuse_pass")) {
    auto &fc_fuse_pass = GetPass("fc_fuse_pass");
    fc_fuse_pass->Set<bool>("use_fc_padding", new bool(use_fc_padding));
  }
}

194 195 196 197
std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
  if (passes_.empty()) {
    return graph;
  }
198 199 200
  PADDLE_ENFORCE_NOT_NULL(graph.get(), platform::errors::PreconditionNotMet(
                                           "Graph cannot be NULL."));
  UpdatePasses();
201 202
  // Apply all the passes
  for (const auto &pass : passes_) {
203
    if (pass->Type() != "graph_viz_pass" && !disable_logs_) {
Y
Yan Chunwei 已提交
204 205
      PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
    }
206
    graph.reset(pass->Apply(graph.release()));
207
  }
G
Gabor Buella 已提交
208
  return graph;
209 210 211
}

framework::proto::ProgramDesc IRPassManager::AcquireProgram(
N
nhzlx 已提交
212
    std::unique_ptr<Graph> *graph, ProgramDesc *program) const {
213 214 215
  auto pass =
      framework::ir::PassRegistry::Instance().Get("graph_to_program_pass");

N
nhzlx 已提交
216 217
  // Direct using ProgramDesc desc(argument->main_program()) may cause
  // incomplete copies of information.
N
nhzlx 已提交
218
  ProgramDesc desc;
N
nhzlx 已提交
219
  desc.CopyFrom(*program->Proto());
220 221
  pass->SetNotOwned("program", &desc);
  auto *the_graph = graph->release();
222
  graph->reset(pass->Apply(the_graph));
223 224 225
  return *desc.Proto();
}

226 227 228
}  // namespace analysis
}  // namespace inference
}  // namespace paddle