// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/ir_pass_manager.h" #include #include #include #include #include #include #include #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/analysis/argument.h" #include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace inference { namespace analysis { using string::PrettyLogEndl; using string::PrettyLog; using string::Style; IRPassManager::IRPassManager(Argument *argument) { ARGUMENT_CHECK_FIELD(argument, main_program); graph_ = std::unique_ptr(new Graph(argument->main_program())); if (argument->Has("scope")) { auto *scope_ptr = argument->scope_ptr(); PADDLE_ENFORCE(scope_ptr); graph_->SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr); } ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes); CreatePasses(argument, argument->ir_analysis_passes()); } void IRPassManager::CreatePasses(Argument *argument, const std::vector &passes) { std::string pre_pass; int pass_num = 0; for (const std::string &pass_name : passes) { auto pass = framework::ir::PassRegistry::Instance().Get(pass_name); if (pass_name == "graph_viz_pass") { std::string dot_file_path = std::to_string(pass_num) + "_ir_" + (pre_pass.empty() ? "origin" : pre_pass) + ".dot"; pass->Set("graph_viz_path", new std::string(std::move(dot_file_path))); pass_num++; } else if (pass_name == "mkldnn_placement_pass") { pass->Set("mkldnn_enabled_op_types", new std::unordered_set( argument->mkldnn_enabled_op_types())); } else if (pass_name == "cudnn_placement_pass") { pass->Set("cudnn_enabled_op_types", new std::unordered_set()); #ifdef PADDLE_WITH_MKLDNN } else if (pass_name == "cpu_quantize_placement_pass") { pass->Set("quantize_enabled_op_types", new std::unordered_set( argument->quantize_enabled_op_types())); pass->Set( "quantize_excluded_op_ids", new std::unordered_set(argument->quantize_excluded_op_ids())); } else if (pass_name == "cpu_quantize_pass") { pass->Set("quant_var_scales", new VarQuantScale(argument->quant_var_scales())); #endif } else if (pass_name == "tensorrt_subgraph_pass") { pass->Set("workspace_size", new int(argument->tensorrt_workspace_size())); pass->Set("max_batch_size", new int(argument->tensorrt_max_batch_size())); pass->Set("min_subgraph_size", new int(argument->tensorrt_min_subgraph_size())); pass->Set("program", new framework::ProgramDesc *(&argument->main_program())); auto precision_mode = argument->tensorrt_precision_mode(); bool enable_int8 = precision_mode == AnalysisConfig::Precision::kInt8; pass->Set("predictor_id", new int(argument->predictor_id())); bool use_calib_mode = argument->tensorrt_use_calib_mode(); pass->Set("enable_int8", new bool(enable_int8)); pass->Set("use_calib_mode", new bool(use_calib_mode)); pass->Set("precision_mode", new AnalysisConfig::Precision(precision_mode)); bool use_static_engine = argument->tensorrt_use_static_engine(); bool model_from_memory = argument->model_from_memory(); std::string optim_cache_dir = argument->optim_cache_dir(); bool int8_valid = !(model_from_memory && optim_cache_dir.empty() && enable_int8); PADDLE_ENFORCE(int8_valid, "When you are in TRT INT8 mode, and load model from " "memory, you should set optim_cache_dir using " "config.SetOptimCacheDir()"); PADDLE_ENFORCE(!(model_from_memory && use_static_engine), "When you are using Paddle-TRT, and also using load model " "from memory, you should set the use_static to false."); if (!optim_cache_dir.empty()) { pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir)); } else if (use_static_engine || enable_int8) { std::string model_opt_cache_dir = argument->Has("model_dir") ? argument->model_dir() : GetDirRoot(argument->model_program_path()); pass->Set( "model_opt_cache_dir", new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir))); } pass->Set("gpu_device_id", new int(argument->gpu_device_id())); pass->Set("use_static_engine", new bool(use_static_engine)); pass->Set("model_from_memory", new bool(argument->model_from_memory())); } if (pass_name == "ngraph_subgraph_pass") { pass->Set("program", new framework::ProgramDesc *(&argument->main_program())); } if (pass_name == "anakin_subgraph_pass") { pass->Set("program", new framework::ProgramDesc *(&argument->main_program())); pass->Set("use_gpu", new bool(argument->use_gpu())); pass->Set("gpu_device_id", new int(argument->gpu_device_id())); pass->Set("model_from_memory", new bool(argument->model_from_memory())); pass->Set("predictor_id", new int(argument->predictor_id())); pass->Set("max_input_shape", new std::map>( argument->anakin_max_input_shape())); pass->Set("max_batch_size", new int(argument->anakin_max_batch_size())); bool enable_int8 = argument->anakin_precision_mode() == AnalysisConfig::Precision::kInt8; pass->Set("enable_int8", new bool(enable_int8)); pass->Set("anakin_ops_filter", new std::vector(argument->anakin_ops_filter())); pass->Set("auto_config_layout", new bool(argument->anakin_auto_config_layout())); } disable_logs_ = argument->disable_logs(); if (pass_name == "fc_fuse_pass") { pass->Set("use_gpu", new bool(argument->use_gpu())); } pre_pass = pass_name; passes_.emplace_back(std::move(pass)); } } bool IRPassManager::HasPass(const std::string &pass_type) { if (passes_.empty()) return false; auto it = std::find_if( passes_.begin(), passes_.end(), [&](std::unique_ptr &pass) { return pass->Type() == pass_type; }); return it != passes_.end(); } std::unique_ptr &IRPassManager::GetPass(const std::string &pass_type) { PADDLE_ENFORCE_EQ(passes_.empty(), false, platform::errors::PreconditionNotMet( "The list of passes cannot be empty.")); auto it = std::find_if(passes_.begin(), passes_.end(), [&](const std::unique_ptr &pass) { return pass->Type() == pass_type; }); PADDLE_ENFORCE_NE(it, passes_.end(), platform::errors::PermissionDenied( "You cannot get pass which was not added earlier.")); return *it; } // Some passes depend on each other. This method serves for exchanging // information between them. void IRPassManager::UpdatePasses() { // Update padding settings for fc_fuse_pass. Skipp adding padding for // MKL-DNN-based FC bool use_fc_padding = !HasPass("fc_mkldnn_pass"); if (HasPass("fc_fuse_pass")) { auto &fc_fuse_pass = GetPass("fc_fuse_pass"); fc_fuse_pass->Set("use_fc_padding", new bool(use_fc_padding)); } } std::unique_ptr IRPassManager::Apply(std::unique_ptr graph) { if (passes_.empty()) { return graph; } PADDLE_ENFORCE_NOT_NULL(graph.get(), platform::errors::PreconditionNotMet( "Graph cannot be NULL.")); UpdatePasses(); // Apply all the passes for (const auto &pass : passes_) { if (pass->Type() != "graph_viz_pass" && !disable_logs_) { PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type()); } graph.reset(pass->Apply(graph.release())); } return graph; } framework::proto::ProgramDesc IRPassManager::AcquireProgram( std::unique_ptr *graph, ProgramDesc *program) const { auto pass = framework::ir::PassRegistry::Instance().Get("graph_to_program_pass"); // Direct using ProgramDesc desc(argument->main_program()) may cause // incomplete copies of information. ProgramDesc desc; desc.CopyFrom(*program->Proto()); pass->SetNotOwned("program", &desc); auto *the_graph = graph->release(); graph->reset(pass->Apply(the_graph)); return *desc.Proto(); } } // namespace analysis } // namespace inference } // namespace paddle