conv_fusion_op.cu 23.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16

17
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
20
#include "paddle/fluid/operators/conv_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22
#include "paddle/phi/kernels/funcs/padding.h"
Q
qingqing01 已提交
23

24
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
25 26 27 28

namespace paddle {
namespace operators {

R
ronnywang 已提交
29
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
Q
qingqing01 已提交
30 31 32 33 34 35
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
36
using framework::AlgorithmsCache;
37
using framework::ConvSearchCache;
38

Q
qingqing01 已提交
39 40 41 42 43 44 45
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
46
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
Q
qingqing01 已提交
47 48 49 50 51
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
52
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
66 67 68 69

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

70 71
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
72 73
    transformed_input_channel = *input;
    transformed_output = *output;
74 75
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
76
    const T* residual_data = residual ? residual->data<T>() : output_data;
77

78 79 80
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
81
    framework::DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
82 83

    framework::DDim filter_data_dims =
84 85
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
86 87
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
88 89

    int data_dim = strides.size();  // 2d or 3d
90
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
110
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
111
      transformed_input.Resize(new_input_shape);
L
Leo Chen 已提交
112
      auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
113 114

      transformed_input =
L
Leo Chen 已提交
115
          ctx.AllocateTmpTensor<T, phi::GPUContext>(new_input_shape, dev_ctx);
116 117 118 119
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
L
Leo Chen 已提交
120
          phi::funcs::PadFunction<phi::GPUContext, T, 4>(
121 122 123 124
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
125 126 127
              &transformed_input);
        } break;
        case 5: {
L
Leo Chen 已提交
128
          phi::funcs::PadFunction<phi::GPUContext, T, 5>(
129 130 131 132
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
133 134 135
              &transformed_input);
        } break;
        default:
136 137
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
138
              "But received the actual dimension = %d, shape = [%s].",
139 140
              rank,
              transformed_input_channel.dims()));
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
157 158 159 160 161 162 163 164 165 166 167 168

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
169 170 171
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
172
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
173 174 175 176 177 178
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
179
        layout, phi::vectorize<int>(transformed_input.dims()));
R
ronnywang 已提交
180
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
181
        layout, phi::vectorize<int>(transformed_output.dims()));
182
    miopenTensorDescriptor_t cudnn_filter_desc =
183
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
R
ronnywang 已提交
184 185 186 187
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
188

R
ronnywang 已提交
189 190 191 192
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

193 194
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
R
ronnywang 已提交
195 196

    size_t workspace_size = 0;
197
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
198
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
199 200 201 202 203 204
            handle,
            cudnn_filter_desc,
            cudnn_input_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            &workspace_size));
R
ronnywang 已提交
205 206 207
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
208
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
209
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
210 211 212 213 214 215 216 217 218 219 220 221 222 223
              handle,
              cudnn_input_desc,
              input_data,
              cudnn_filter_desc,
              filter_data,
              cudnn_conv_desc,
              cudnn_output_desc,
              output_data,
              kNUM_CUDNN_FWD_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
R
ronnywang 已提交
224 225 226 227 228 229 230 231
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenConvolutionForward(handle,
                                                        &alpha,
                                                        cudnn_input_desc,
                                                        input_data,
                                                        cudnn_filter_desc,
                                                        filter_data,
                                                        cudnn_conv_desc,
                                                        algo,
                                                        &beta,
                                                        cudnn_output_desc,
                                                        output_data,
                                                        cudnn_workspace,
                                                        workspace_size));
R
ronnywang 已提交
246 247
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
248
      PADDLE_ENFORCE_GPU_SUCCESS(
249 250 251 252 253 254 255
          platform::dynload::miopenConvolutionForwardBias(handle,
                                                          &alpha,
                                                          cudnn_bias_desc,
                                                          bias_data,
                                                          &beta,
                                                          cudnn_output_desc,
                                                          output_data));
R
ronnywang 已提交
256
      if (activation != "identity") {
257 258 259 260 261 262 263 264 265
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenActivationForward(handle,
                                                       cudnn_act_desc,
                                                       &alpha,
                                                       cudnn_output_desc,
                                                       output_data,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
R
ronnywang 已提交
266 267
      }
      if (residual) {
268 269 270 271 272 273 274 275 276 277 278 279
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenOpTensor(handle,
                                              miopenTensorOpAdd,
                                              &alpha,
                                              cudnn_output_desc,
                                              output_data,
                                              &alpha,
                                              cudnn_output_desc,
                                              residual_data,
                                              &beta,
                                              cudnn_output_desc,
                                              output_data));
R
ronnywang 已提交
280 281 282
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
283
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
284
        conv_desc.descriptor<T>(padding_common, strides, dilations);
285 286
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
287 288

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
289
        layout, phi::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
290
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
291
        layout, phi::vectorize<int>(transformed_output.dims()));
292
    cudnnFilterDescriptor_t cudnn_filter_desc =
293
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
294
    // Now only support NCHW
295 296
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
297 298 299 300 301 302 303
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
304
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
305 306
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
307
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
308 309 310 311 312 313 314
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
315
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
X
xiaoxiaohehe001 已提交
316
    auto dtype = platform::CudnnDataType<T>::type;
Q
qingqing01 已提交
317

318
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
319
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
X
xiaoxiaohehe001 已提交
320 321 322 323
    if (dtype == CUDNN_DATA_HALF) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
    }
A
AshburnLee 已提交
324
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
325
    if (!platform::allow_tf32_cudnn) {
326 327
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
328
    }
A
AshburnLee 已提交
329
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
330

331 332
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
333
    if (!exhaustive_search) {
334
#if CUDNN_VERSION >= 8000
335 336 337 338 339
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
340
      PADDLE_ENFORCE_GPU_SUCCESS(
341
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
342 343 344 345 346 347 348
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              kNUM_CUDNN_FWD_ALGS,
              &perf_count,
349 350
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
351
      PADDLE_ENFORCE_GPU_SUCCESS(
352
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
353 354 355 356 357 358 359
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              algo,
              &workspace_size_in_bytes));
360 361
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
362
#else
363
      PADDLE_ENFORCE_GPU_SUCCESS(
364
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
365 366 367 368 369 370 371 372
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit,
              &algo));
373 374
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
375
    } else {
376 377
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
378 379 380
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
381
        auto cudnn_find_func = [&](void* cudnn_workspace) {
382
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
383
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
384 385 386 387 388 389 390 391 392 393 394 395 396
                  handle,
                  cudnn_input_desc,
                  input_data,
                  cudnn_filter_desc,
                  filter_data,
                  cudnn_conv_desc,
                  cudnn_output_desc,
                  output_data,
                  kNUM_CUDNN_FWD_ALGS,
                  &returned_algo_count,
                  fwd_perf_stat.data(),
                  cudnn_workspace,
                  workspace_size_limit));
C
chengduo 已提交
397
        };
398
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
399 400 401 402 403 404 405 406
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
407
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
408
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
409 410 411
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
412
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
413 414 415 416
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
417 418
        algo = algo_cache.GetAlgorithm(
            x_dims[2] * x_dims[3], search_times, 0, search_func);
Q
qingqing01 已提交
419
      } else {
420 421 422 423 424 425 426 427
        algo = algo_cache.GetAlgorithm(x_dims,
                                       f_dims,
                                       strides,
                                       paddings,
                                       dilations,
                                       0,
                                       dtype,
                                       search_func);
Q
qingqing01 已提交
428 429 430 431
      }
      VLOG(3) << "choose algo " << algo;
    }

432
    PADDLE_ENFORCE_GPU_SUCCESS(
433
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
434 435 436 437 438 439 440
            handle,
            cudnn_input_desc,
            cudnn_filter_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            algo,
            &workspace_size_in_bytes));
441
    PADDLE_ENFORCE_LE(
442 443
        workspace_size_in_bytes,
        workspace_size_limit,
444 445
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
446
            "to be less than the limit. But received: the actual workspace "
447
            "size = %d, limit = %d.",
448 449
            workspace_size_in_bytes,
            workspace_size_limit));
Q
qingqing01 已提交
450

N
nhzlx 已提交
451
    if ((activation == "identity") && (!residual)) {
452 453 454 455 456 457
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
458
      auto cudnn_func = [&](void* cudnn_workspace) {
459 460 461 462 463 464 465 466 467 468 469 470 471 472
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnConvolutionForward(handle,
                                                       &alpha,
                                                       cudnn_input_desc,
                                                       input_data,
                                                       cudnn_filter_desc,
                                                       filter_data,
                                                       cudnn_conv_desc,
                                                       algo,
                                                       cudnn_workspace,
                                                       workspace_size_in_bytes,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
C
chengduo 已提交
473 474
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
475 476 477 478 479 480 481 482
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnAddTensor(handle,
                                            &alpha,
                                            cudnn_bias_desc,
                                            bias_data,
                                            &alpha,
                                            cudnn_output_desc,
                                            output_data));
483 484 485 486 487 488 489
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
490
      auto cudnn_func = [&](void* cudnn_workspace) {
491
        PADDLE_ENFORCE_GPU_SUCCESS(
492
            platform::dynload::cudnnConvolutionBiasActivationForward(
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
                handle,
                &alpha1,
                cudnn_input_desc,
                input_data,
                cudnn_filter_desc,
                filter_data,
                cudnn_conv_desc,
                algo,
                cudnn_workspace,
                workspace_size_in_bytes,
                &alpha2,
                cudnn_output_desc,
                residual_data,
                cudnn_bias_desc,
                bias_data,
                cudnn_act_desc,
                cudnn_output_desc,
                output_data));
C
chengduo 已提交
511 512
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
513
    }
R
ronnywang 已提交
514
#endif
Q
qingqing01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
533
        PADDLE_THROW(platform::errors::Unimplemented(
534
            "Input with batch size greater than 1 is unsupported. The received "
535
            "batch size is %d, Input's shape is [%s].",
536 537
            x_dims[0],
            phi::make_ddim(x_dims)));
Q
qingqing01 已提交
538 539
      }
    }
Q
qingqing01 已提交
540 541
  }
};
D
Dang Qingqing 已提交
542
#endif
Q
qingqing01 已提交
543 544 545 546 547

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
548
#if CUDNN_VERSION >= 7100
549 550 551 552 553
REGISTER_OP_CUDA_KERNEL(
    conv2d_fusion,
    ops::CUDNNConvFusionOpKernel<float>,
    ops::CUDNNConvFusionOpKernel<double>,
    ops::CUDNNConvFusionOpKernel<paddle::platform::float16>);
D
Dang Qingqing 已提交
554
#endif
R
ronnywang 已提交
555 556 557
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif