conv_fusion_op.cu 23.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16

17
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
20
#include "paddle/fluid/operators/conv_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22
#include "paddle/phi/kernels/funcs/padding.h"
Q
qingqing01 已提交
23

24
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
25 26 27 28

namespace paddle {
namespace operators {

R
ronnywang 已提交
29
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
Q
qingqing01 已提交
30 31 32 33 34 35
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
36
using framework::AlgorithmsCache;
37
using framework::ConvSearchCache;
38

Q
qingqing01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
52
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
66 67 68 69

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

70 71
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
72 73
    transformed_input_channel = *input;
    transformed_output = *output;
74 75
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
76
    const T* residual_data = residual ? residual->data<T>() : output_data;
77

78 79 80
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
81
    framework::DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
82 83

    framework::DDim filter_data_dims =
84 85
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
86 87
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
88 89

    int data_dim = strides.size();  // 2d or 3d
90
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
110
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
111 112 113 114 115 116 117 118 119 120 121
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
122
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
123 124 125 126
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
127 128 129
              &transformed_input);
        } break;
        case 5: {
130
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
131 132 133 134
              dev_ctx,
              input_pad,
              transformed_input_channel,
              pad_value,
135 136 137
              &transformed_input);
        } break;
        default:
138 139
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
140
              "But received the actual dimension = %d, shape = [%s].",
141 142
              rank,
              transformed_input_channel.dims()));
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
159 160 161 162 163 164 165 166 167 168 169 170

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
171 172 173
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
174
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
175 176 177 178 179 180
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
181
        layout, phi::vectorize<int>(transformed_input.dims()));
R
ronnywang 已提交
182
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
183
        layout, phi::vectorize<int>(transformed_output.dims()));
184
    miopenTensorDescriptor_t cudnn_filter_desc =
185
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
R
ronnywang 已提交
186 187 188 189
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
190

R
ronnywang 已提交
191 192 193 194
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

195 196
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
R
ronnywang 已提交
197 198

    size_t workspace_size = 0;
199
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
200
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
201 202 203 204 205 206
            handle,
            cudnn_filter_desc,
            cudnn_input_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            &workspace_size));
R
ronnywang 已提交
207 208 209
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
210
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
211
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
212 213 214 215 216 217 218 219 220 221 222 223 224 225
              handle,
              cudnn_input_desc,
              input_data,
              cudnn_filter_desc,
              filter_data,
              cudnn_conv_desc,
              cudnn_output_desc,
              output_data,
              kNUM_CUDNN_FWD_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
R
ronnywang 已提交
226 227 228 229 230 231 232 233
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenConvolutionForward(handle,
                                                        &alpha,
                                                        cudnn_input_desc,
                                                        input_data,
                                                        cudnn_filter_desc,
                                                        filter_data,
                                                        cudnn_conv_desc,
                                                        algo,
                                                        &beta,
                                                        cudnn_output_desc,
                                                        output_data,
                                                        cudnn_workspace,
                                                        workspace_size));
R
ronnywang 已提交
248 249
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
250
      PADDLE_ENFORCE_GPU_SUCCESS(
251 252 253 254 255 256 257
          platform::dynload::miopenConvolutionForwardBias(handle,
                                                          &alpha,
                                                          cudnn_bias_desc,
                                                          bias_data,
                                                          &beta,
                                                          cudnn_output_desc,
                                                          output_data));
R
ronnywang 已提交
258
      if (activation != "identity") {
259 260 261 262 263 264 265 266 267
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenActivationForward(handle,
                                                       cudnn_act_desc,
                                                       &alpha,
                                                       cudnn_output_desc,
                                                       output_data,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
R
ronnywang 已提交
268 269
      }
      if (residual) {
270 271 272 273 274 275 276 277 278 279 280 281
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::miopenOpTensor(handle,
                                              miopenTensorOpAdd,
                                              &alpha,
                                              cudnn_output_desc,
                                              output_data,
                                              &alpha,
                                              cudnn_output_desc,
                                              residual_data,
                                              &beta,
                                              cudnn_output_desc,
                                              output_data));
R
ronnywang 已提交
282 283 284
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
285
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
286
        conv_desc.descriptor<T>(padding_common, strides, dilations);
287 288
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
289 290

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
291
        layout, phi::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
292
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
293
        layout, phi::vectorize<int>(transformed_output.dims()));
294
    cudnnFilterDescriptor_t cudnn_filter_desc =
295
        filter_desc.descriptor<T>(layout, phi::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
296
    // Now only support NCHW
297 298
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
299 300 301 302 303 304 305
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
306
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
307 308
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
309
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
310 311 312 313 314 315 316
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
317
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
318

319
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
320
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
321
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
322
    if (!platform::allow_tf32_cudnn) {
323 324
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
325
    }
A
AshburnLee 已提交
326
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
327

328 329
    auto x_dims = phi::vectorize(transformed_input.dims());
    auto f_dims = phi::vectorize(filter->dims());
330
    if (!exhaustive_search) {
331
#if CUDNN_VERSION >= 8000
332 333 334 335 336
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
337
      PADDLE_ENFORCE_GPU_SUCCESS(
338
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
339 340 341 342 343 344 345
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              kNUM_CUDNN_FWD_ALGS,
              &perf_count,
346 347
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
348
      PADDLE_ENFORCE_GPU_SUCCESS(
349
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
350 351 352 353 354 355 356
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              algo,
              &workspace_size_in_bytes));
357 358
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
359
#else
360
      PADDLE_ENFORCE_GPU_SUCCESS(
361
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
362 363 364 365 366 367 368 369
              handle,
              cudnn_input_desc,
              cudnn_filter_desc,
              cudnn_conv_desc,
              cudnn_output_desc,
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit,
              &algo));
370 371
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
372
    } else {
373 374
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
375 376 377
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
378
        auto cudnn_find_func = [&](void* cudnn_workspace) {
379
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
380
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
381 382 383 384 385 386 387 388 389 390 391 392 393
                  handle,
                  cudnn_input_desc,
                  input_data,
                  cudnn_filter_desc,
                  filter_data,
                  cudnn_conv_desc,
                  cudnn_output_desc,
                  output_data,
                  kNUM_CUDNN_FWD_ALGS,
                  &returned_algo_count,
                  fwd_perf_stat.data(),
                  cudnn_workspace,
                  workspace_size_limit));
C
chengduo 已提交
394
        };
395
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
396 397 398 399 400 401 402 403
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
404
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
405
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
406 407 408
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
409
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
410 411 412 413
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
414 415
        algo = algo_cache.GetAlgorithm(
            x_dims[2] * x_dims[3], search_times, 0, search_func);
Q
qingqing01 已提交
416
      } else {
417
        auto dtype = platform::CudnnDataType<T>::type;
418 419 420 421 422 423 424 425
        algo = algo_cache.GetAlgorithm(x_dims,
                                       f_dims,
                                       strides,
                                       paddings,
                                       dilations,
                                       0,
                                       dtype,
                                       search_func);
Q
qingqing01 已提交
426 427 428 429
      }
      VLOG(3) << "choose algo " << algo;
    }

430
    PADDLE_ENFORCE_GPU_SUCCESS(
431
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
432 433 434 435 436 437 438
            handle,
            cudnn_input_desc,
            cudnn_filter_desc,
            cudnn_conv_desc,
            cudnn_output_desc,
            algo,
            &workspace_size_in_bytes));
439
    PADDLE_ENFORCE_LE(
440 441
        workspace_size_in_bytes,
        workspace_size_limit,
442 443
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
444
            "to be less than the limit. But received: the actual workspace "
445
            "size = %d, limit = %d.",
446 447
            workspace_size_in_bytes,
            workspace_size_limit));
Q
qingqing01 已提交
448

N
nhzlx 已提交
449
    if ((activation == "identity") && (!residual)) {
450 451 452 453 454 455
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
456
      auto cudnn_func = [&](void* cudnn_workspace) {
457 458 459 460 461 462 463 464 465 466 467 468 469 470
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnConvolutionForward(handle,
                                                       &alpha,
                                                       cudnn_input_desc,
                                                       input_data,
                                                       cudnn_filter_desc,
                                                       filter_data,
                                                       cudnn_conv_desc,
                                                       algo,
                                                       cudnn_workspace,
                                                       workspace_size_in_bytes,
                                                       &beta,
                                                       cudnn_output_desc,
                                                       output_data));
C
chengduo 已提交
471 472
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
473 474 475 476 477 478 479 480
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnAddTensor(handle,
                                            &alpha,
                                            cudnn_bias_desc,
                                            bias_data,
                                            &alpha,
                                            cudnn_output_desc,
                                            output_data));
481 482 483 484 485 486 487
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
488
      auto cudnn_func = [&](void* cudnn_workspace) {
489
        PADDLE_ENFORCE_GPU_SUCCESS(
490
            platform::dynload::cudnnConvolutionBiasActivationForward(
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                handle,
                &alpha1,
                cudnn_input_desc,
                input_data,
                cudnn_filter_desc,
                filter_data,
                cudnn_conv_desc,
                algo,
                cudnn_workspace,
                workspace_size_in_bytes,
                &alpha2,
                cudnn_output_desc,
                residual_data,
                cudnn_bias_desc,
                bias_data,
                cudnn_act_desc,
                cudnn_output_desc,
                output_data));
C
chengduo 已提交
509 510
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
511
    }
R
ronnywang 已提交
512
#endif
Q
qingqing01 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
531
        PADDLE_THROW(platform::errors::Unimplemented(
532
            "Input with batch size greater than 1 is unsupported. The received "
533
            "batch size is %d, Input's shape is [%s].",
534 535
            x_dims[0],
            phi::make_ddim(x_dims)));
Q
qingqing01 已提交
536 537
      }
    }
Q
qingqing01 已提交
538 539
  }
};
D
Dang Qingqing 已提交
540
#endif
Q
qingqing01 已提交
541 542 543 544 545

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
546
#if CUDNN_VERSION >= 7100
547 548 549 550 551
REGISTER_OP_CUDA_KERNEL(
    conv2d_fusion,
    ops::CUDNNConvFusionOpKernel<float>,
    ops::CUDNNConvFusionOpKernel<double>,
    ops::CUDNNConvFusionOpKernel<paddle::platform::float16>);
D
Dang Qingqing 已提交
552
#endif
R
ronnywang 已提交
553 554 555
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif