elementwise_mul_op.h 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
W
Wu Yi 已提交
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18
#include "paddle/fluid/operators/math/blas.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

28 29 30 31 32 33 34 35 36 37 38 39 40
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        MulFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
41 42 43
elementwise_mul_same_dims(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
                          const framework::Tensor* y, framework::Tensor* z) {
44
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
45
  blas.VMUL(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
46 47 48 49 50 51
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
52 53 54 55 56 57 58 59 60
elementwise_mul_same_dims(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
                          const framework::Tensor* y, framework::Tensor* z) {
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
  eigen_z.device(place) = eigen_x * eigen_y;
61 62
}

Q
QI JUN 已提交
63
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
64
class ElementwiseMulKernel : public framework::OpKernel<T> {
65 66
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
67 68 69 70
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
                   ctx.op().Input("X"));
C
chengduo 已提交
71
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1,
                     "For elementwise_op, if X is Sparse, Y must be scalar.");
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
S
sneaxiy 已提交
90
                   framework::ToTypeName(x_var->Type()));
C
chengduo 已提交
91
    }
C
chengduoZH 已提交
92 93

    z->mutable_data<T>(ctx.GetPlace());
C
chengduo 已提交
94
    if (x.numel() == y->numel()) {
95
      elementwise_mul_same_dims<DeviceContext, T>(ctx, &x, y, z);
96
    } else {
C
chengduo 已提交
97
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
98
    }
G
gongweibao 已提交
99 100
  }
};
101

G
gongweibao 已提交
102
template <typename T>
C
chengduoZH 已提交
103
struct MulGradDX {
C
chengduoZH 已提交
104
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
105 106
};

G
gongweibao 已提交
107
template <typename T>
C
chengduoZH 已提交
108
struct MulGradDY {
C
chengduoZH 已提交
109
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
110
};
C
chengduoZH 已提交
111

Q
QI JUN 已提交
112
template <typename DeviceContext, typename T>
113
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
114 115
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
116
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
117 118 119 120 121
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
122
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
123 124 125
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
126 127
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
G
gongweibao 已提交
128 129
  }
};
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

153 154
    // dx = dout * ddy
    // dy = dout * ddx
155
    // ddout = ddx * y + x * ddy
156 157 158 159 160 161 162
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
    // (5) dx = dout *ddy
163
    if (ddout) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
      // use dx to save memory, other than alloc tmp tensor
      Tensor* ddout_tmp = dx;

      default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
      int axis = ctx.Attr<int>("axis");
      // NOTE: in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
          MulGradDX<T>(), MulGradDY<T>());
      default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
      auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
      ddout_t.device(place) = ddout_t + ddout_tmp_t;
      default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
185 186 187 188
    }
  }
};

189 190 191
DECLARE_INPLACE_OP_INFERER(ElementwiseMulDoubleGradOpInplace, {"DDX", "DDOut"},
                           {"X", framework::GradVarName("X")},
                           {"Y", framework::GradVarName("Y")});
192 193
}  // namespace operators
}  // namespace paddle