elementwise_mul_op.h 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
W
Wu Yi 已提交
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18
#include "paddle/fluid/operators/math/blas.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        MulFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VMUL(x->numel(), x->data<T>(), y->data<T>(),
            z->mutable_data<T>(ctx.GetPlace()));
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
59
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
60
class ElementwiseMulKernel : public framework::OpKernel<T> {
61 62
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
63 64 65 66
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
                   ctx.op().Input("X"));
C
chengduo 已提交
67
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1,
                     "For elementwise_op, if X is Sparse, Y must be scalar.");
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
S
sneaxiy 已提交
86
                   framework::ToTypeName(x_var->Type()));
C
chengduo 已提交
87
    }
C
chengduoZH 已提交
88 89

    z->mutable_data<T>(ctx.GetPlace());
C
chengduo 已提交
90 91
    if (x.numel() == y->numel()) {
      elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
92
    } else {
C
chengduo 已提交
93
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
94
    }
G
gongweibao 已提交
95 96
  }
};
97

G
gongweibao 已提交
98
template <typename T>
C
chengduoZH 已提交
99
struct MulGradDX {
C
chengduoZH 已提交
100
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
101 102
};

G
gongweibao 已提交
103
template <typename T>
C
chengduoZH 已提交
104
struct MulGradDY {
C
chengduoZH 已提交
105
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
106
};
C
chengduoZH 已提交
107

Q
QI JUN 已提交
108
template <typename DeviceContext, typename T>
109
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
110 111
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
112
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
113 114 115 116 117
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
118
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
119 120 121
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
122 123
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
G
gongweibao 已提交
124 125
  }
};
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    // dx = dout * ddy
    // dy = dout * ddx
    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
        MulGradDY<T>());

    // ddout = ddx * y + x * ddy
    if (ddout) {
      if (ddx && ddy) {
        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, ddx, y, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, x, ddy, &ddout_tmp);

        auto& place =
            *ctx.template device_context<DeviceContext>().eigen_device();
        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        if (ddx) default_elementwise_mul<DeviceContext, T>(ctx, ddx, y, ddout);
        if (ddy) default_elementwise_mul<DeviceContext, T>(ctx, x, ddy, ddout);
      }
    }
  }
};

177 178
}  // namespace operators
}  // namespace paddle