strided_slice_op.cc 17.0 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/strided_slice_op.h"
#include <algorithm>
#include <memory>
18
#include <string>
W
wangchaochaohu 已提交
19
#include <vector>
20
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class StridedSliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "StridedSlice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "StridedSlice");
34 35 36 37 38 39 40
    auto input_var_type = ctx->GetInputsVarType("Input")[0];
    if (input_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      if (ctx->IsRuntime()) {
        // shape is determined by Runtime.
        return;
      }
    }
W
wangchaochaohu 已提交
41
    auto in_dims = ctx->GetInputDim("Input");
42 43 44 45 46 47
    PADDLE_ENFORCE_LT(
        in_dims.size(), 7,
        platform::errors::InvalidArgument(
            "The dimension of StridedSlice operator's input should be less "
            "than 7, but received dimension is %d.",
            in_dims.size()));
48 49 50 51 52 53 54 55 56

    auto starts_int = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends_int = ctx->Attrs().Get<std::vector<int>>("ends");
    auto strides_int = ctx->Attrs().Get<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
57
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
58
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
59
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
60

61 62 63
    auto starts_size = starts.size();
    auto ends_size = ends.size();
    auto strides_size = strides.size();
W
wangchaochaohu 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
    for (size_t i = 0; i < axes.size(); ++i) {
      PADDLE_ENFORCE_GE(axes[i], 0,
                        platform::errors::InvalidArgument(
                            "The axis should be greater than or equal to 0."
                            "But received %d of axes[%d]",
                            axes[i], i));
      PADDLE_ENFORCE_LT(
          axes[i], in_dims.size(),
          platform::errors::InvalidArgument(
              "The axes should be less than or equal to input tensor's rank."
              "But received %d of axes[%d], input tensor shape [%d]",
              axes[i], i, in_dims.size()));
    }

79 80
    if (ctx->HasInputs("StartsTensorList")) {
      auto StartsTensorList = ctx->Inputs("StartsTensorList");
81 82 83 84
      PADDLE_ENFORCE_GT(
          StartsTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's StartsTensorList is empty."));
85 86 87 88
      starts_size = StartsTensorList.size();
    }
    if (ctx->HasInputs("EndsTensorList")) {
      auto EndsTensorList = ctx->Inputs("EndsTensorList");
89 90 91 92
      PADDLE_ENFORCE_GT(
          EndsTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's EndsTensorList is empty."));
93 94 95 96
      ends_size = EndsTensorList.size();
    }
    if (ctx->HasInputs("StridesTensorList")) {
      auto StridesTensorList = ctx->Inputs("StridesTensorList");
97 98 99 100
      PADDLE_ENFORCE_GT(
          StridesTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's StridesTensorList is empty."));
101 102 103 104 105 106 107 108
      strides_size = StridesTensorList.size();
    }

    auto tensor_input = false;
    if (ctx->HasInput("EndsTensor") || ctx->HasInput("StartsTensor") ||
        ctx->HasInput("StridesTensor")) {
      tensor_input = true;
    }
W
wangchaochaohu 已提交
109
    if (!ctx->HasInput("EndsTensor")) {
110 111 112 113 114 115 116
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The ends attribute's size "
              "is %d, axes attribute's size is %d.",
              ends_size, axes.size()));
117
    }
W
wangchaochaohu 已提交
118
    if (!ctx->HasInput("StartsTensor")) {
119 120
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
121 122 123 124 125
          platform::errors::InvalidArgument(
              "The size of starts attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The starts attribute's "
              "size is %d, axes attribute's size is %d.",
              starts_size, axes.size()));
126
    }
W
wangchaochaohu 已提交
127
    if (!ctx->HasInput("StridesTensor")) {
128 129
      PADDLE_ENFORCE_EQ(
          strides_size, axes.size(),
130 131 132 133 134
          platform::errors::InvalidArgument(
              "The size of strides attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The strides attribute's "
              "size is %d, axes attribute's size is %d.",
              strides_size, axes.size()));
135
    }
W
wangchaochaohu 已提交
136 137
    // we need to analysis strided slice op is valid for
    // the parameter that we get from python front
138
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
139 140
    if (!tensor_input) {
      StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
141 142
                          decrease_axis, out_dims_vector.data(), axes.size(),
                          true);
W
wangchaochaohu 已提交
143 144
    }
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));
145 146
    // generate new shape
    if (decrease_axis.size() > 0) {
147
      std::vector<int64_t> new_out_shape;
148 149 150
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        if (ctx->IsRuntime() && infer_flags[i] != -1) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
151 152 153 154
                            platform::errors::InvalidArgument(
                                "the size of decrease dimension should be 1, "
                                "but received %d.",
                                out_dims[decrease_axis[i]]));
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }
W
wangchaochaohu 已提交
170 171 172 173 174 175
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("Input", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
176
      const framework::ExecutionContext &ctx) const override {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    auto *in_var = ctx.InputVar("Input");
    auto is_in_var_array = in_var->IsType<framework::LoDTensorArray>();
    if (is_in_var_array) {
      auto &tensor_array = in_var->Get<framework::LoDTensorArray>();
      for (auto &tensor : tensor_array) {
        if (!platform::is_cuda_pinned_place(tensor.place())) {
          PADDLE_ENFORCE_EQ(
              platform::is_same_place(tensor.place(),
                                      ctx.device_context().GetPlace()),
              true,
              platform::errors::InvalidArgument(
                  "Place of context is %s. Place of input tensor is %s. They "
                  "are should be same, but reveived different place.",
                  string::to_string(ctx.device_context().GetPlace()),
                  string::to_string(tensor.place())));
        }
      }
      return framework::OpKernelType(
          OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
          ctx.device_context());
    }
198 199 200 201 202
    // NOTE: cuda pinned tensor need to copy its data to target place
    auto in_tensor = ctx.Input<Tensor>("Input");
    if (platform::is_cuda_pinned_place(in_tensor->place())) {
      return framework::OpKernelType(in_tensor->type(), ctx.device_context());
    }
203 204
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
205
        in_tensor->place());
W
wangchaochaohu 已提交
206
  }
207 208 209 210 211 212 213 214 215 216 217 218 219 220
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor" ||
        var_name == "StridesTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StridesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
W
wangchaochaohu 已提交
221 222
};

223 224 225 226 227 228 229 230
class StridedSliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SetOutputType("Out", ctx->GetInputType("Input"));
    ctx->SetOutputDataType("Out", ctx->GetInputDataType("Input"));
  }
};

W
wangchaochaohu 已提交
231 232 233 234
class StridedSliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "Tensor of data to extract slices from.");
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    AddOutput("Out", "Strided Sliced data tensor.");

    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StridesTensor",
        "(Tensor<int32>, optional) If provided, slice will use this."
        "It has the highest priority of StridesTensor, StridesTensorList and "
        "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "StridesTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(strides).")
        .AsDuplicable()
        .AsDispensable();
W
wangchaochaohu 已提交
274
    AddAttr<std::vector<int>>(
275
        "axes", "(list<int>) Axes that `starts` and `ends` apply to.");
W
wangchaochaohu 已提交
276
    AddAttr<std::vector<int>>(
277 278
        "starts", "(list<int>) Start indices for the strided slice start.")
        .SetDefault({});
W
wangchaochaohu 已提交
279
    AddAttr<std::vector<int>>("ends",
280 281
                              "(list<int>) End indices the tensor slice end")
        .SetDefault({});
W
wangchaochaohu 已提交
282
    AddAttr<std::vector<int>>(
283 284 285 286 287
        "strides", "(list<int> Stride step from the start to the end)")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
288 289
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
wangchaochaohu 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    AddComment(R"DOC(
Strided Slice Operator.
Instead of calling this op directly most users will want to use the
NumPy-style slicing syntax.
For Example:
data = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='int64')
y = fluid.layers.strided_slice(data, [0, 1], [1,0], [2, 3], [1, 1])
)DOC");
  }
};

class StridedSliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

305
  void InferShape(framework::InferShapeContext *ctx) const override {
306 307 308 309 310
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "StridedSliceGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "StridedSliceGrad");

311 312 313 314 315 316 317
    auto input_var_type = ctx->GetInputsVarType("Input")[0];
    if (input_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      if (ctx->IsRuntime()) {
        // shape is determined by Runtime
        return;
      }
    }
W
wangchaochaohu 已提交
318 319 320 321 322 323 324 325
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
326
      const framework::ExecutionContext &ctx) const override {
327 328 329
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
W
wangchaochaohu 已提交
330
  }
331 332 333
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
334 335
    if (var_name == "StartsTensor" || var_name == "EndsTensor" ||
        var_name == "StridesTensor") {
336 337
      return expected_kernel_type;
    }
338 339
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StridesTensorList") {
340 341 342 343 344
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
W
wangchaochaohu 已提交
345 346
};

H
hong 已提交
347 348
template <typename T>
class StridedSliceOpGradMaker : public framework::SingleGradOpMaker<T> {
W
wangchaochaohu 已提交
349
 public:
H
hong 已提交
350
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
wangchaochaohu 已提交
351 352

 protected:
353
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
354 355 356 357 358 359 360 361 362 363
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetInput("Input", this->Input("Input"));
    bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    bind->SetInput("StridesTensor", this->Input("StridesTensor"));
    bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    bind->SetInput("StridesTensorList", this->Input("StridesTensorList"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
W
wangchaochaohu 已提交
364 365 366
    bind->SetType("strided_slice_grad");
  }
};
367 368 369 370 371 372 373 374 375 376
class StridedSliceGradOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SetOutputType(framework::GradVarName("Input"),
                       ctx->GetInputType(framework::GradVarName("Out")));
    ctx->SetOutputDataType(
        framework::GradVarName("Input"),
        ctx->GetInputDataType(framework::GradVarName("Out")));
  }
};
W
wangchaochaohu 已提交
377

378
DECLARE_NO_NEED_BUFFER_VARS_INFERER(StridedSliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
379
                                    "Input");
W
wangchaochaohu 已提交
380 381 382 383 384 385

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(strided_slice, ops::StridedSliceOp, ops::StridedSliceOpMaker,
H
hong 已提交
386
                  ops::StridedSliceOpGradMaker<paddle::framework::OpDesc>,
387 388 389
                  ops::StridedSliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::StridedSliceOpVarTypeInference);

W
wangchaochaohu 已提交
390
REGISTER_OPERATOR(strided_slice_grad, ops::StridedSliceOpGrad,
391 392
                  ops::StridedSliceOpGradNoNeedBufferVarsInferer,
                  ops::StridedSliceGradOpVarTypeInference);
W
wangchaochaohu 已提交
393 394 395

REGISTER_OP_CPU_KERNEL(
    strided_slice,
396
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, bool>,
W
wangchaochaohu 已提交
397 398 399
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, float>,
400 401
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext,
402
                            paddle::platform::complex<float>>,
403
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext,
404
                            paddle::platform::complex<double>>);
W
wangchaochaohu 已提交
405 406 407

REGISTER_OP_CPU_KERNEL(
    strided_slice_grad,
408
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, bool>,
W
wangchaochaohu 已提交
409 410 411
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, float>,
412 413
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext,
414
                                paddle::platform::complex<float>>,
415
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext,
416
                                paddle::platform::complex<double>>);