strided_slice_op.cc 13.3 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/strided_slice_op.h"
#include <algorithm>
#include <memory>
18
#include <string>
W
wangchaochaohu 已提交
19
#include <vector>
20
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class StridedSliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "StridedSlice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "StridedSlice");
W
wangchaochaohu 已提交
34 35

    auto in_dims = ctx->GetInputDim("Input");
36 37 38 39 40 41
    PADDLE_ENFORCE_LT(
        in_dims.size(), 7,
        platform::errors::InvalidArgument(
            "The dimension of StridedSlice operator's input should be less "
            "than 7, but received dimension is %d.",
            in_dims.size()));
42 43 44 45 46 47 48 49 50

    auto starts_int = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends_int = ctx->Attrs().Get<std::vector<int>>("ends");
    auto strides_int = ctx->Attrs().Get<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
51
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
52
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
53
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
54

55 56 57
    auto starts_size = starts.size();
    auto ends_size = ends.size();
    auto strides_size = strides.size();
W
wangchaochaohu 已提交
58

59 60
    if (ctx->HasInputs("StartsTensorList")) {
      auto StartsTensorList = ctx->Inputs("StartsTensorList");
61 62 63 64
      PADDLE_ENFORCE_GT(
          StartsTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's StartsTensorList is empty."));
65 66 67 68
      starts_size = StartsTensorList.size();
    }
    if (ctx->HasInputs("EndsTensorList")) {
      auto EndsTensorList = ctx->Inputs("EndsTensorList");
69 70 71 72
      PADDLE_ENFORCE_GT(
          EndsTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's EndsTensorList is empty."));
73 74 75 76
      ends_size = EndsTensorList.size();
    }
    if (ctx->HasInputs("StridesTensorList")) {
      auto StridesTensorList = ctx->Inputs("StridesTensorList");
77 78 79 80
      PADDLE_ENFORCE_GT(
          StridesTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's StridesTensorList is empty."));
81 82 83 84 85 86 87 88
      strides_size = StridesTensorList.size();
    }

    auto tensor_input = false;
    if (ctx->HasInput("EndsTensor") || ctx->HasInput("StartsTensor") ||
        ctx->HasInput("StridesTensor")) {
      tensor_input = true;
    }
W
wangchaochaohu 已提交
89
    if (!ctx->HasInput("EndsTensor")) {
90 91 92 93 94 95 96
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The ends attribute's size "
              "is %d, axes attribute's size is %d.",
              ends_size, axes.size()));
97
    }
W
wangchaochaohu 已提交
98
    if (!ctx->HasInput("StartsTensor")) {
99 100
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
101 102 103 104 105
          platform::errors::InvalidArgument(
              "The size of starts attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The starts attribute's "
              "size is %d, axes attribute's size is %d.",
              starts_size, axes.size()));
106
    }
W
wangchaochaohu 已提交
107
    if (!ctx->HasInput("StridesTensor")) {
108 109
      PADDLE_ENFORCE_EQ(
          strides_size, axes.size(),
110 111 112 113 114
          platform::errors::InvalidArgument(
              "The size of strides attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The strides attribute's "
              "size is %d, axes attribute's size is %d.",
              strides_size, axes.size()));
115
    }
W
wangchaochaohu 已提交
116 117
    // we need to analysis strided slice op is valid for
    // the parameter that we get from python front
118
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
119 120
    if (!tensor_input) {
      StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
121 122
                          decrease_axis, out_dims_vector.data(), axes.size(),
                          true);
W
wangchaochaohu 已提交
123 124
    }
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));
125 126
    // generate new shape
    if (decrease_axis.size() > 0) {
127
      std::vector<int64_t> new_out_shape;
128 129 130
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        if (ctx->IsRuntime() && infer_flags[i] != -1) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
131 132 133 134
                            platform::errors::InvalidArgument(
                                "the size of decrease dimension should be 1, "
                                "but received %d.",
                                out_dims[decrease_axis[i]]));
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }
W
wangchaochaohu 已提交
150 151 152 153 154 155
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("Input", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
156
      const framework::ExecutionContext &ctx) const override {
157 158 159
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.Input<Tensor>("Input")->place());
W
wangchaochaohu 已提交
160
  }
161 162 163 164 165 166 167 168 169 170 171 172 173 174
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor" ||
        var_name == "StridesTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StridesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
W
wangchaochaohu 已提交
175 176 177 178 179 180
};

class StridedSliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "Tensor of data to extract slices from.");
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    AddOutput("Out", "Strided Sliced data tensor.");

    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StridesTensor",
        "(Tensor<int32>, optional) If provided, slice will use this."
        "It has the highest priority of StridesTensor, StridesTensorList and "
        "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "StridesTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(strides).")
        .AsDuplicable()
        .AsDispensable();
W
wangchaochaohu 已提交
220
    AddAttr<std::vector<int>>(
221
        "axes", "(list<int>) Axes that `starts` and `ends` apply to.");
W
wangchaochaohu 已提交
222
    AddAttr<std::vector<int>>(
223 224
        "starts", "(list<int>) Start indices for the strided slice start.")
        .SetDefault({});
W
wangchaochaohu 已提交
225
    AddAttr<std::vector<int>>("ends",
226 227
                              "(list<int>) End indices the tensor slice end")
        .SetDefault({});
W
wangchaochaohu 已提交
228
    AddAttr<std::vector<int>>(
229 230 231 232 233
        "strides", "(list<int> Stride step from the start to the end)")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
234 235
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
wangchaochaohu 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    AddComment(R"DOC(
Strided Slice Operator.
Instead of calling this op directly most users will want to use the
NumPy-style slicing syntax.
For Example:
data = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='int64')
y = fluid.layers.strided_slice(data, [0, 1], [1,0], [2, 3], [1, 1])
)DOC");
  }
};

class StridedSliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

251
  void InferShape(framework::InferShapeContext *ctx) const override {
252 253 254 255 256
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "StridedSliceGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "StridedSliceGrad");

W
wangchaochaohu 已提交
257 258 259 260 261 262 263 264
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
265
      const framework::ExecutionContext &ctx) const override {
266 267 268
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
W
wangchaochaohu 已提交
269
  }
270 271 272
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
273 274
    if (var_name == "StartsTensor" || var_name == "EndsTensor" ||
        var_name == "StridesTensor") {
275 276
      return expected_kernel_type;
    }
277 278
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StridesTensorList") {
279 280 281 282 283
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
W
wangchaochaohu 已提交
284 285
};

H
hong 已提交
286 287
template <typename T>
class StridedSliceOpGradMaker : public framework::SingleGradOpMaker<T> {
W
wangchaochaohu 已提交
288
 public:
H
hong 已提交
289
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
wangchaochaohu 已提交
290 291

 protected:
292
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
293 294 295 296 297 298 299 300 301 302
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetInput("Input", this->Input("Input"));
    bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    bind->SetInput("StridesTensor", this->Input("StridesTensor"));
    bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    bind->SetInput("StridesTensorList", this->Input("StridesTensorList"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
W
wangchaochaohu 已提交
303 304 305 306
    bind->SetType("strided_slice_grad");
  }
};

Z
Zeng Jinle 已提交
307 308
DECLARE_NO_NEED_BUFFER_VARS_INFERER(StridedSliceOpGradNoNeedBufferVarsInference,
                                    "Input");
W
wangchaochaohu 已提交
309 310 311 312 313 314

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(strided_slice, ops::StridedSliceOp, ops::StridedSliceOpMaker,
H
hong 已提交
315 316
                  ops::StridedSliceOpGradMaker<paddle::framework::OpDesc>,
                  ops::StridedSliceOpGradMaker<paddle::imperative::OpBase>);
W
wangchaochaohu 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
REGISTER_OPERATOR(strided_slice_grad, ops::StridedSliceOpGrad,
                  ops::StridedSliceOpGradNoNeedBufferVarsInference);

REGISTER_OP_CPU_KERNEL(
    strided_slice,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    strided_slice_grad,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, double>);