engine.h 8.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <unordered_set>
22
#include <vector>
N
nhzlx 已提交
23
#include "paddle/fluid/framework/tensor.h"
24
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
25 26
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
27
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
28
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
29
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
30
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
31 32 33 34 35

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
36
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
37 38 39 40 41 42
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
43 44 45
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;

Y
Yan Chunwei 已提交
46 47 48 49
 public:
  // Weight is model parameter.
  class Weight {
   public:
50
    Weight() = default;
51
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
52 53 54 55
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
56
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
57

58 59
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
60 61 62 63
   private:
    nvinfer1::Weights w_;
  };

64
  TensorRTEngine(int max_batch, int max_workspace, bool enable_int8 = false,
N
nhzlx 已提交
65
                 TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
Y
Yan Chunwei 已提交
66 67 68
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
N
nhzlx 已提交
69
        enable_int8_(enable_int8),
N
nhzlx 已提交
70
        calibrator_(calibrator),
N
nhzlx 已提交
71
        device_id_(device_id),
72
        logger_(logger) {}
Y
Yan Chunwei 已提交
73

74
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
75 76

  // TODO(Superjomn) implement it later when graph segmentation is supported.
77
  void Build(const DescType& paddle_model);
Y
Yan Chunwei 已提交
78

79 80
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream);
Y
Yan Chunwei 已提交
81 82 83 84

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
N
nhzlx 已提交
85
    freshDeviceId();
86
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
101 102
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
103 104
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
105

L
Luo Tao 已提交
106 107 108
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
109 110 111

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
N
nhzlx 已提交
112 113 114 115 116 117 118 119 120

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
121
    freshDeviceId();
N
nhzlx 已提交
122 123
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(runtime->deserializeCudaEngine(
N
nhzlx 已提交
124 125
        engine_serialized_data.c_str(), engine_serialized_data.size(),
        &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
N
nhzlx 已提交
126 127 128 129 130
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
    infer_context_.reset(infer_engine_->createExecutionContext());
  }

131 132
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
133
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
134
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
135
                                    int num_inputs, plugin::PluginTensorRT*);
136 137 138 139 140 141 142
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
143 144 145 146 147 148 149 150

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
151

152 153 154 155 156 157
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

Y
Yan Chunwei 已提交
158
 private:
N
nhzlx 已提交
159 160 161 162 163
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
164 165
  // the max batch size
  int max_batch_;
166 167
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
168 169
  // the max memory size the engine uses
  int max_workspace_;
170

N
nhzlx 已提交
171
  bool enable_int8_;
N
nhzlx 已提交
172 173 174
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
175

N
nhzlx 已提交
176
  int device_id_;
Y
Yan Chunwei 已提交
177 178 179 180
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
181 182
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
183

184
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
185 186 187 188

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
189 190 191 192 193
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
194 195 196 197 198 199 200
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
201
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
202
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
Y
Yan Chunwei 已提交
203 204
};  // class TensorRTEngine

205 206 207 208
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

Y
Yan Chunwei 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221
// Add an layer__ into engine__ with args ARGS.
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

  TensorRTEngine* Create(std::string name, int max_batch, int max_workspace,
                         bool enable_int8 = false,
                         TRTInt8Calibrator* calibrator = nullptr,
                         int device_id = 0,
                         nvinfer1::ILogger& logger = NaiveLogger::Global()) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, enable_int8,
                                 calibrator, device_id, logger);
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
255 256 257
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle