c_send_op.cu.cc 3.2 KB
Newer Older
S
sandyhouse 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_send_op.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif

namespace paddle {
namespace operators {

template <typename T>
class CSendOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
    auto x = ctx.Input<framework::LoDTensor>("X");
    int numel = x->numel();
    ncclDataType_t dtype = platform::ToNCCLDataType(x->type());

    int rid = ctx.Attr<int>("ring_id");
    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);

    cudaStream_t stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    int peer = ctx.Attr<int>("peer");
S
sandyhouse 已提交
47 48 49 50 51
    PADDLE_ENFORCE_LT(
        peer, comm->nranks(),
        platform::errors::InvalidArgument("The value of peer (%d) you set must "
                                          "be less than comm->nranks (%d).",
                                          peer, comm->nranks()));
S
sandyhouse 已提交
52 53 54 55 56 57 58 59 60 61
    int* numel_ptr = nullptr;
    VLOG(0) << "numel: " << numel;
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaMalloc(&numel_ptr, sizeof(int)));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpy(numel_ptr, &numel, sizeof(int), cudaMemcpyHostToDevice));
    // PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGroupStart());
    VLOG(0) << "wawa1";
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclSend(
        numel_ptr, 1, ncclInt, peer, comm->comm(), stream));
    VLOG(0) << "wawa2";
S
sandyhouse 已提交
62

S
sandyhouse 已提交
63 64
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclSend(
        x->data<T>(), numel, dtype, peer, comm->comm(), stream));
S
sandyhouse 已提交
65 66 67
    VLOG(0) << "wawa3";
    // PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGroupEnd());
    VLOG(0) << "wawa4";
S
sandyhouse 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    VLOG(3) << "rank " << comm->rank() << " send "
            << framework::product(x->dims()) << " to " << peer;
#else
    PADDLE_THROW(
        platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(c_send, ops::CSendOpCUDAKernel<float>,
                        ops::CSendOpCUDAKernel<double>,
                        ops::CSendOpCUDAKernel<int>,
                        ops::CSendOpCUDAKernel<int64_t>,
                        ops::CSendOpCUDAKernel<plat::float16>);