提交 47f51e07 编写于 作者: S sandyhouse

add gather op

上级 f7f122c3
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_gather_op.h"
namespace paddle {
namespace operators {
class CGatherOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CGather");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CGather");
int root_id = ctx->Attrs().Get<int>("root");
int ring_id = ctx->Attrs().Get<int>("ring_id");
int nranks = ctx->Attrs().Get<int>("nranks");
PADDLE_ENFORCE_GE(nranks, 2,
platform::errors::InvalidArgument(
"The number of ranks (%d) must be greater than 1 "
"to use collective op (c_gather op).",
nranks));
PADDLE_ENFORCE_GE(
root_id, 0,
platform::errors::InvalidArgument(
"The root_id (%d) for c_gather_op must be non-negative.", root_id));
PADDLE_ENFORCE_LT(
root_id, nranks,
platform::errors::InvalidArgument(
"The root_id (%d) for c_gather_op must be less than nranks (%d).",
root_id, nranks));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_gather_op must be non-negative.", root_id));
framework::DDim dim = ctx->GetInputDim("X");
dim[0] = dim[0] * nranks;
if (dim[0] < 0) dim[0] = -1;
ctx->SetOutputDim("Out", dim);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class CGatherOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Tensor) tensor to be gathered.");
AddOutput("Out", "(Tensor) the result of gather.");
AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
.SetDefault(0);
AddAttr<int>("root", "(int default 0) root id for broadcasting.")
.SetDefault(0);
AddAttr<int>("nranks", "(int default 1) number of ranks.").SetDefault(0);
AddAttr<bool>(
"use_calc_stream",
"(bool default false) eject CUDA operations to calculation stream.")
.SetDefault(false);
AddComment(R"DOC(
CGather Operator
Gather tensors from all participators.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(c_gather, ops::CGatherOp, ops::CGatherOpMaker);
REGISTER_OP_CPU_KERNEL(c_gather, ops::CGatherOpCPUKernel<float>,
ops::CGatherOpCPUKernel<double>,
ops::CGatherOpCPUKernel<int>,
ops::CGatherOpCPUKernel<int64_t>,
ops::CGatherOpCPUKernel<plat::float16>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_gather_op.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace operators {
template <typename T>
class CGatherOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
auto x = ctx.Input<framework::LoDTensor>("X");
auto out = ctx.Output<framework::LoDTensor>("Out");
int send_numel = x->numel();
ncclDataType_t dtype = platform::ToNCCLDataType(x->type());
int nranks = ctx.Attr<int>("nranks");
int root_id = ctx.Attr<int>("root");
int ring_id = ctx.Attr<int>("ring_id");
auto place = ctx.GetPlace();
auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
PADDLE_ENFORCE_EQ(nranks, comm->nranks(),
platform::errors::InvalidArgument(
"The number of ranks (%d) you set of must "
"be equal to comm->nranks (%d).",
nranks, comm->nranks()));
PADDLE_ENFORCE_GE(
root_id, 0,
platform::errors::InvalidArgument(
"The root_id (%d) for c_scatter_op must be non-negative.",
root_id));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_scatter_op must be non-negative.",
ring_id));
cudaStream_t stream = nullptr;
if (ctx.Attr<bool>("use_calc_stream")) {
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
framework::DDim x_dims = x->dims();
framework::DDim out_dims(x_dims);
out_dims[0] *= nranks;
auto send_buf = x->data<T>();
auto offset = 0;
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGroupStart());
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclSend(
send_buf, send_numel, dtype, root_id, comm->comm(), stream));
if (root_id == comm->rank()) {
auto recv_buf = out->mutable_data<T>(out_dims, place);
for (auto i = 0; i < nranks; ++i) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclRecv(
recv_buf + offset, send_numel, dtype, i, comm->comm(), stream));
offset += send_numel;
}
}
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGroupEnd());
#else
PADDLE_ENFORCE_EQ(
true, false,
platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_gather, ops::CGatherOpCUDAKernel<float>,
ops::CGatherOpCUDAKernel<double>,
ops::CGatherOpCUDAKernel<int>,
ops::CGatherOpCUDAKernel<int64_t>,
ops::CGatherOpCUDAKernel<plat::float16>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#if defined(PADDLE_WITH_GLOO)
#include <gloo/gather.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
namespace paddle {
namespace operators {
template <typename T>
class CGatherOpCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_GLOO)
auto in = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
auto root_id = ctx.Attr<int>("root");
auto nranks = ctx.Attr<int>("nranks");
auto gloo = paddle::framework::GlooWrapper::GetInstance();
PADDLE_ENFORCE_EQ(
gloo->IsInitialized(), true,
platform::errors::PreconditionNotMet(
"You must initialize the gloo environment first to use it."));
PADDLE_ENFORCE_EQ(nranks, gloo->Size(),
platform::errors::InvalidArgument(
"The number of ranks (%d) you set must "
"be equal to gloo->Size() (%d).",
nranks, gloo->Size()));
int64_t send_numel = in->numel();
int64_t recv_numel = out->numel();
auto in_dim = x->dims();
auto out_dim = framework::DDim(in_dim);
out_dim[0] *= nranks;
auto nranks = gloo->Size();
auto rank = gloo->Rank();
gloo::GatherOptions opts(gloo->GetContext());
if (root_id == rank) {
T* recv_buff = out->mutable_data<T>(place, out_dim);
opts.setOutput(recv_buff, recv_numel);
}
opts.setInput(send_buff, send_numel);
opts.setRoot(root_id);
gloo::gather(opts);
#else
PADDLE_THROW(platform::errors::Unavailable(
"PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
}
};
} // namespace operators
} // namespace paddle
......@@ -21,20 +21,34 @@ class CRecvOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {}
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CRecv");
int peer = ctx->Attrs().Get<int>("peer");
int ring_id = ctx->Attrs().Get<int>("ring_id");
PADDLE_ENFORCE_GE(
peer, 0,
platform::errors::InvalidArgument(
"The peer (%d) for c_send_op must be non-negative.", peer));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_send_op must be non-negative.", ring_id));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
auto out = ctx.Output<framework::LoDTensor>("Out");
auto dtype = out->type();
return framework::OpKernelType(dtype, ctx.GetPlace());
// OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
}
};
class CRecvOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("Out", "(Tensor) tensor to receive.");
AddOutput("Out", "(Tensor) tensor to receive.");
AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
.SetDefault(0);
AddAttr<int>("peer", "(int default 0) rank id for sender.").SetDefault(0);
......
......@@ -27,7 +27,7 @@ class CRecvOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
auto out = ctx.Input<framework::LoDTensor>("Out");
auto out = ctx.Output<framework::LoDTensor>("Out");
int numel = out->numel();
ncclDataType_t dtype = platform::ToNCCLDataType(out->type());
......@@ -44,9 +44,13 @@ class CRecvOpCUDAKernel : public framework::OpKernel<T> {
}
int peer = ctx.Attr<int>("peer");
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::ncclRecv(const_cast<T*>(out->data<T>()), numel,
dtype, peer, comm->comm(), stream));
PADDLE_ENFORCE_LT(
peer, comm->nranks(),
platform::errors::InvalidArgument("The value of peer (%d) you set must "
"be less than comm->nranks (%d).",
peer, comm->nranks()));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclRecv(
out->data<T>(), numel, dtype, peer, comm->comm(), stream));
VLOG(3) << "rank " << comm->rank() << " recv "
<< framework::product(out->dims()) << " from " << peer;
#else
......
......@@ -37,11 +37,16 @@ class CScatterOp : public framework::OperatorWithKernel {
platform::errors::InvalidArgument(
"The root_id (%d) for c_scatter_op must be non-negative.",
root_id));
PADDLE_ENFORCE_LT(root_id, nranks,
platform::errors::InvalidArgument(
"The root_id (%d) for c_scatter_op must be less "
"than the number of ranks (%d).",
root_id, nranks));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_scatter_op must be non-negative.",
root_id));
ring_id));
framework::DDim dim = ctx->GetInputDim("X");
dim[0] = dim[0] / nranks;
if (dim[0] < 0) dim[0] = -1;
......
......@@ -39,7 +39,7 @@ class CScatterOpCUDAKernel : public framework::OpKernel<T> {
auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
PADDLE_ENFORCE_EQ(nranks, comm->nranks(),
platform::errors::InvalidArgument(
"The number of ranks (%d) you set of must "
"The number of ranks (%d) you set must "
"be equal to comm->nranks (%d).",
nranks, comm->nranks()));
PADDLE_ENFORCE_GE(
......@@ -63,30 +63,23 @@ class CScatterOpCUDAKernel : public framework::OpKernel<T> {
framework::DDim x_dims = x->dims();
framework::DDim out_dims(x_dims);
framework::Tensor temp;
auto out_ptr = temp.mutable_data<T>(out_dims, place);
out_dims[0] /= nranks;
auto send_buf = x->data<T>();
auto send_numel = numel / nranks;
auto recv_buf = out->mutable_data<T>(out_dims, place);
auto offset = 0;
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGroupStart());
if (root_id == comm->rank()) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBcast(
reinterpret_cast<void*>(const_cast<T*>(x->data<T>())), numel, dtype,
root_id, comm->comm(), stream));
framework::TensorCopy(*static_cast<const framework::Tensor*>(x), place,
*platform::DeviceContextPool::Instance().Get(place),
static_cast<framework::Tensor*>(&temp));
} else {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBcast(
out_ptr, numel, dtype, root_id, comm->comm(), stream));
for (auto i = 0; i < nranks; ++i) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::ncclSend(send_buf + offset, send_numel, dtype,
root_id, comm->comm(), stream));
offset += send_numel;
}
}
out_dims[0] = out_dims[0] / nranks;
auto start_index = out_dims[0] * comm->rank();
auto end_index = start_index + out_dims[0];
temp = temp.Slice(start_index, end_index);
temp.Resize(out_dims);
out->mutable_data<T>(out_dims, place);
framework::TensorCopySync(*static_cast<const framework::Tensor*>(&temp),
place, static_cast<framework::Tensor*>(out));
out->Resize(out_dims);
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclRecv(
recv_buf, send_numel, dtype, root_id, comm->comm(), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGroupEnd());
#else
PADDLE_ENFORCE_EQ(
true, false,
......
......@@ -21,7 +21,19 @@ class CSendOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {}
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CSend");
int peer = ctx->Attrs().Get<int>("peer");
int ring_id = ctx->Attrs().Get<int>("ring_id");
PADDLE_ENFORCE_GE(
peer, 0,
platform::errors::InvalidArgument(
"The peer (%d) for c_send_op must be non-negative.", peer));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_send_op must be non-negative.", ring_id));
}
protected:
framework::OpKernelType GetExpectedKernelType(
......
......@@ -44,6 +44,12 @@ class CSendOpCUDAKernel : public framework::OpKernel<T> {
}
int peer = ctx.Attr<int>("peer");
PADDLE_ENFORCE_LT(
peer, comm->nranks(),
platform::errors::InvalidArgument("The value of peer (%d) you set must "
"be less than comm->nranks (%d).",
peer, comm->nranks()));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclSend(
x->data<T>(), numel, dtype, peer, comm->comm(), stream));
VLOG(3) << "rank " << comm->rank() << " send "
......
......@@ -58,6 +58,8 @@ if(NOT WITH_GPU OR WIN32)
LIST(REMOVE_ITEM TEST_OPS test_broadcast)
LIST(REMOVE_ITEM TEST_OPS test_collective_reduce)
LIST(REMOVE_ITEM TEST_OPS test_collective_sendrecv)
LIST(REMOVE_ITEM TEST_OPS test_collective_gather)
LIST(REMOVE_ITEM TEST_OPS test_collective_alltoall)
LIST(REMOVE_ITEM TEST_OPS test_collective_scatter)
LIST(REMOVE_ITEM TEST_OPS test_collective_reduce_api)
LIST(REMOVE_ITEM TEST_OPS test_collective_scatter_api)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
class TestCollectiveAllToAll(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank=None):
ring_id = 0
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32')
toutdata = layers.data(
name="toutdata", shape=[10, 1000], dtype='float32')
main_prog.global_block().append_op(
type="c_alltoall",
inputs={'X': tindata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id})
main_prog.global_block().append_op(
type="c_sync_comm_stream",
inputs={'X': toutdata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id})
return toutdata
if __name__ == "__main__":
runtime_main(TestCollectiveAllToAll, "alltoall", 0)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
class TestCollectiveGather(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program, rank=None):
ring_id = 0
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32')
toutdata = layers.data(
name="toutdata", shape=[20, 1000], dtype='float32')
main_prog.global_block().append_op(
type="c_gather",
inputs={'X': tindata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id,
'nranks': 2,
'root': 1})
main_prog.global_block().append_op(
type="c_sync_comm_stream",
inputs={'X': toutdata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id})
return toutdata
if __name__ == "__main__":
runtime_main(TestCollectiveGather, "gather", 0)
......@@ -36,7 +36,7 @@ from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
class TestCollectiveScatter(TestCollectiveRunnerBase):
class TestCollectiveSendRecv(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
......@@ -48,7 +48,7 @@ class TestCollectiveScatter(TestCollectiveRunnerBase):
if rank == 0:
main_prog.global_block().append_op(
type="c_recv",
inputs={'Out': tindata},
outputs={'Out': tindata},
attrs={'ring_id': ring_id,
'peer': 1})
else:
......@@ -59,11 +59,11 @@ class TestCollectiveScatter(TestCollectiveRunnerBase):
'peer': 0})
main_prog.global_block().append_op(
type="c_sync_comm_stream",
inputs={'X': toutdata},
outputs={'Out': toutdata},
inputs={'X': tindata},
outputs={'Out': tindata},
attrs={'ring_id': ring_id})
return tindata
if __name__ == "__main__":
runtime_main(TestCollectiveScatter, "scatter", 0)
runtime_main(TestCollectiveSendRecv, "sendrecv", 0)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from test_collective_base import TestDistBase
class TestCAllToAllOp(TestDistBase):
def _setup_config(self):
pass
def test_alltoall(self):
self.check_with_place("collective_alltoall_op.py", "alltoall")
if __name__ == '__main__':
unittest.main()
......@@ -261,6 +261,22 @@ class TestDistBase(unittest.TestCase):
elif col_type == "sendrecv":
need_result = input2
self.assertTrue(np.allclose(tr0_out, need_result))
elif col_type == "gather":
need_result = np.vstack((input1, input2))
self.assertTrue(np.allclose(tr1_out, need_result))
elif col_type == "alltoall":
temp11, temp12 = np.split(input1, 2)
temp21, temp22 = np.split(input2, 2)
need_result1 = np.hstack((temp11, temp21))
need_result2 = np.hstack((temp12, temp22))
print("input1:", input1)
print("input2:", input2)
print("need_result1:", need_result1)
print("need_result2:", need_result2)
print("tr0_out:", tr0_out)
print("tr1_out:", tr1_out)
self.assertTrue(np.allclose(tr1_out, need_result1))
self.assertTrue(np.allclose(tr2_out, need_result2))
elif col_type == "reduce_scatter":
tmp = input1 + input2
need_result1 = tmp[0:tmp.shape[0] // 2]
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from test_collective_base import TestDistBase
class TestCGatherOp(TestDistBase):
def _setup_config(self):
pass
def test_gather(self):
self.check_with_place("collective_gather_op.py", "gather")
if __name__ == '__main__':
unittest.main()
......@@ -19,7 +19,7 @@ import numpy as np
from test_collective_base import TestDistBase
class TestCScatterOp(TestDistBase):
class TestCSendRecvOp(TestDistBase):
def _setup_config(self):
pass
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册