sendrecvop_utils.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
Y
Yi Wang 已提交
16

T
typhoonzero 已提交
17
#ifdef PADDLE_WITH_CUDA
T
fix ci  
typhoonzero 已提交
18
#include <nccl.h>
T
typhoonzero 已提交
19
#endif
20
#include <sys/time.h>
Y
Yi Wang 已提交
21 22
#include <thread>  // NOLINT

23 24 25 26 27
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
28
#include "paddle/fluid/operators/detail/variable_response.h"
29
#include "paddle/fluid/platform/profiler.h"
G
gongweibao 已提交
30 31 32 33

namespace paddle {
namespace operators {
namespace detail {
X
Xin Pan 已提交
34 35 36 37
namespace {
const int kStartProfile = 1;
const int kStopProfile = 2;
}  // namespace
G
gongweibao 已提交
38

T
typhoonzero 已提交
39 40 41 42 43 44
using VarMsg = sendrecv::VariableMessage;

void GetTensorPayload(framework::Variable* var,
                      const platform::DeviceContext& ctx, VarMsg* request,
                      void** payload, size_t* payload_size) {
  auto tensor = var->Get<framework::LoDTensor>();
T
typhoonzero 已提交
45
  // FIXME(wuyi): data types in send_recv.proto is copied from
T
typhoonzero 已提交
46
  // framework.proto
T
typhoonzero 已提交
47 48
  request->set_data_type(
      static_cast<VarMsg::Type>(framework::ToDataType(tensor.type())));
T
typhoonzero 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  for (auto& dim : framework::vectorize(tensor.dims())) {
    request->add_dims(dim);
  }
  const framework::LoD lod = tensor.lod();
  if (lod.size() > 0) {
    request->set_lod_level(lod.size());
    for (auto& each : lod) {
      VarMsg::LodData* lod_inner = request->add_lod();
      for (auto& d : each) {
        lod_inner->add_lod_data(d);
      }
    }
  }
  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
    platform::CPUPlace cpu;
    auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
    *payload = memory::Alloc(cpu, copy_size);

    memory::Copy(cpu, *payload, boost::get<platform::CUDAPlace>(tensor.place()),
                 reinterpret_cast<const void*>(tensor.data<void>()), copy_size,
                 gpu_dev_ctx.stream());
    ctx.Wait();
#endif
  } else {
    *payload = tensor.data<void>();
  }
  *payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
}

void GetSelectedRowsPayload(framework::Variable* var,
                            const platform::DeviceContext& ctx, VarMsg* request,
                            void** payload, size_t* payload_size) {
  auto* slr = var->GetMutable<framework::SelectedRows>();
T
typhoonzero 已提交
85 86
  request->set_data_type(
      static_cast<VarMsg::Type>(framework::ToDataType(slr->value().type())));
T
typhoonzero 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  request->set_lod_level(0);
  request->set_slr_height(slr->height());

  for (auto& dim : framework::vectorize(slr->value().dims())) {
    request->add_dims(dim);
  }

  auto* tensor = slr->mutable_value();
  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
    platform::CPUPlace cpu;
    auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor->numel() * framework::SizeOfType(tensor->type());
    *payload = memory::Alloc(cpu, copy_size);
    memory::Copy(cpu, *payload,
                 boost::get<platform::CUDAPlace>(tensor->place()),
                 reinterpret_cast<const void*>(tensor->data<void>()), copy_size,
                 gpu_dev_ctx.stream());
    ctx.Wait();
#endif
  } else {
    *payload = slr->mutable_value()->data<void>();
  }
  *payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
}

113 114
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
Y
Yancey1989 已提交
115 116
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
T
typhoonzero 已提交
117 118
  // Default DestroyCallback does nothing, When using GPU
  // the CPU buffer need to be freed.
119
  DestroyCallback destroy_callback = [](void* backing) {};
T
typhoonzero 已提交
120
  VarMsg request;
Y
Yancey 已提交
121
  void* payload = nullptr;
122
  size_t payload_size;
T
typhoonzero 已提交
123 124

  request.set_varname(name);
125 126 127 128
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
X
Xin Pan 已提交
129 130
  if (platform::ShouldSendProfileState()) {
    if (platform::IsProfileEnabled()) {
X
Xin Pan 已提交
131
      request.set_profile(kStartProfile);
X
Xin Pan 已提交
132
    } else {
X
Xin Pan 已提交
133
      request.set_profile(kStopProfile);
X
Xin Pan 已提交
134 135
    }
  }
T
typhoonzero 已提交
136 137
  if (!out_name.empty()) {
    request.set_out_varname(out_name);
138
  }
139
  if (var->IsType<framework::LoDTensor>()) {
T
typhoonzero 已提交
140 141
    request.set_type(::sendrecv::LOD_TENSOR);
    GetTensorPayload(var, ctx, &request, &payload, &payload_size);
142
  } else if (var->IsType<framework::SelectedRows>()) {
T
typhoonzero 已提交
143 144
    request.set_type(::sendrecv::SELECTED_ROWS);
    GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size);
T
typhoonzero 已提交
145
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
146
  } else if (var->IsType<ncclUniqueId>()) {
147
    request.set_type(::sendrecv::NCCL_ID);
T
typhoonzero 已提交
148
#endif
T
typhoonzero 已提交
149 150 151
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
152 153
  }

T
typhoonzero 已提交
154 155 156 157
  if (platform::is_gpu_place(ctx.GetPlace())) {
    // GPU data is copied to CPU buffer when sending,
    // free the buffer when possible.
    destroy_callback = [](void* backing) {
T
typhoonzero 已提交
158
      platform::CPUPlace cpu;
T
typhoonzero 已提交
159 160
      memory::Free(cpu, backing);
    };
Y
Yancey1989 已提交
161
  }
162

T
typhoonzero 已提交
163 164 165 166 167 168
  std::string header;
  request.AppendToString(&header);
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
  e.WriteRawBytes(std::string(header.data(), header.size()));
169 170
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
T
typhoonzero 已提交
171
#ifdef PADDLE_WITH_CUDA
172
  if (var->IsType<ncclUniqueId>()) {
T
typhoonzero 已提交
173 174
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                              NCCL_UNIQUE_ID_BYTES);
Y
update  
yi.wu 已提交
175
    const ncclUniqueId& uid = var->Get<ncclUniqueId>();
T
typhoonzero 已提交
176
    e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));
177

T
typhoonzero 已提交
178 179 180 181 182 183 184
    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }
T
typhoonzero 已提交
185
#endif
186

T
typhoonzero 已提交
187
  e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
188 189 190 191 192 193 194 195 196 197
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

T
typhoonzero 已提交
198
  if (var->IsType<framework::SelectedRows>()) {
199
    auto* slr = var->GetMutable<framework::SelectedRows>();
Y
Yi Wang 已提交
200
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
201
    size_t rows_memory_size =
T
typhoonzero 已提交
202
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
203 204 205 206 207 208 209 210
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
T
typhoonzero 已提交
211
            rows_memory_size, [](void* backing) {},
212 213 214 215 216 217 218 219 220 221 222 223
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
224
                               const framework::Scope* scope,
Y
Yi Wang 已提交
225
                               framework::Variable** var) {
226
  operators::detail::VariableResponse resp(scope, &ctx);
227
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
Y
Yi Wang 已提交
228
  *var = resp.GetVar();
229 230
}

G
gongweibao 已提交
231 232
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
233
}  // namespace paddle